Distributionally robust polynomial chance-constraints under mixture ambiguity sets

被引:0
|
作者
Jean B. Lasserre
Tillmann Weisser
机构
[1] University of Toulouse,LAAS
[2] Los Alamos National Laboratory,CNRS and Institute of Mathematics
来源
Mathematical Programming | 2021年 / 185卷
关键词
90C47; 90C59; 68T37; 90C22; 49M29; 41A29; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given X⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}\subset {\mathbb {R}}^n$$\end{document}, ε∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,1)$$\end{document}, a parametrized family of probability distributions (μa)a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _{{\mathbf {a}}})_{{\mathbf {a}}\in {\mathbf {A}}}$$\end{document} on Ω⊂Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}\subset {\mathbb {R}}^p$$\end{document}, we consider the feasible set Xε∗⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^*_\varepsilon \subset {\mathbf {X}}$$\end{document} associated with the distributionally robust chance-constraint Xε∗={x∈X:Probμ[f(x,ω)>0]>1-ε,∀μ∈Ma},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbf {X}}^*_\varepsilon \,=\,\{{\mathbf {x}}\in {\mathbf {X}}:\,\mathrm{Prob}_\mu [f({\mathbf {x}},{\omega })\,>\,0]> 1-\varepsilon ,\,\forall \mu \in {\mathscr {M}}_{\mathbf {a}}\}, \end{aligned}$$\end{document}where Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all possibles mixtures of distributions μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\mathbf {a}}$$\end{document}, a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}\in {\mathbf {A}}$$\end{document}. For instance and typically, the family Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all mixtures of Gaussian distributions on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} with mean and standard deviation a=(a,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}=(a,\sigma )$$\end{document} in some compact set A⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}\subset {\mathbb {R}}^2$$\end{document}. We provide a sequence of inner approximations Xεd={x∈X:wd(x)<ε}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^d_\varepsilon =\{{\mathbf {x}}\in {\mathbf {X}}:w_d({\mathbf {x}}) <\varepsilon \}$$\end{document}, d∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document}, where wd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_d$$\end{document} is a polynomial of degree d whose vector of coefficients is an optimal solution of a semidefinite program. The size of the latter increases with the degree d. We also obtain the strong and highly desirable asymptotic guarantee that λ(Xε∗\Xεd)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ({\mathbf {X}}^*_\varepsilon {\setminus } {\mathbf {X}}^d_\varepsilon )\rightarrow 0$$\end{document} as d increases, where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is the Lebesgue measure on X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}$$\end{document}. Same results are also obtained for the more intricated case of distributionally robust “joint” chance-constraints. There is a price to pay for this strong asymptotic guarantee which is the scalability of such a numerical scheme, and so far this important drawback makes it limited to problems of modest dimension.
引用
收藏
页码:409 / 453
页数:44
相关论文
共 50 条
  • [21] Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
    Gupta, Vishal
    MANAGEMENT SCIENCE, 2019, 65 (09) : 4242 - 4260
  • [22] Distributionally Robust Chance-Constrained Optimization with Deep Kernel Ambiguity Set
    Yang, Shu-Bo
    Li, Zukui
    2022 IEEE INTERNATIONAL SYMPOSIUM ON ADVANCED CONTROL OF INDUSTRIAL PROCESSES (ADCONIP 2022), 2022, : 285 - 290
  • [23] Distributionally Robust Optimization Using Cost-Aware Ambiguity Sets
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1855 - 1860
  • [24] Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity
    Nam Ho-Nguyen
    Fatma Kılınç-Karzan
    Simge Küçükyavuz
    Dabeen Lee
    Mathematical Programming, 2022, 196 : 641 - 672
  • [25] Integer programming approaches for distributionally robust chance constraints with adjustable risks
    Zhang, Yiling
    COMPUTERS & OPERATIONS RESEARCH, 2025, 177
  • [26] Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity
    Ho-Nguyen, Nam
    Kilinc-Karzan, Fatma
    Kucukyavuz, Simge
    Lee, Dabeen
    MATHEMATICAL PROGRAMMING, 2022, 196 (1-2) : 641 - 672
  • [27] A decomposition algorithm for distributionally robust chance-constrained programs with polyhedral ambiguity set
    Pathy, Soumya Ranjan
    Rahimian, Hamed
    OPTIMIZATION LETTERS, 2025,
  • [28] Distributionally Robust Portfolio Optimization under Marginal and Copula Ambiguity
    Fan, Zhengyang
    Ji, Ran
    Lejeune, Miguel A.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (03) : 2870 - 2907
  • [29] Distributionally robust chance constrained games under Wasserstein ball
    Xia, Tian
    Liu, Jia
    Lisser, Abdel
    OPERATIONS RESEARCH LETTERS, 2023, 51 (03) : 315 - 321
  • [30] Discretization and quantification for distributionally robust optimization with decision-dependent ambiguity sets
    Li, Manlan
    Tong, Xiaojiao
    Sun, Hailin
    OPTIMIZATION METHODS & SOFTWARE, 2024,