Distributionally robust polynomial chance-constraints under mixture ambiguity sets

被引:0
|
作者
Jean B. Lasserre
Tillmann Weisser
机构
[1] University of Toulouse,LAAS
[2] Los Alamos National Laboratory,CNRS and Institute of Mathematics
来源
Mathematical Programming | 2021年 / 185卷
关键词
90C47; 90C59; 68T37; 90C22; 49M29; 41A29; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given X⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}\subset {\mathbb {R}}^n$$\end{document}, ε∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,1)$$\end{document}, a parametrized family of probability distributions (μa)a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _{{\mathbf {a}}})_{{\mathbf {a}}\in {\mathbf {A}}}$$\end{document} on Ω⊂Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}\subset {\mathbb {R}}^p$$\end{document}, we consider the feasible set Xε∗⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^*_\varepsilon \subset {\mathbf {X}}$$\end{document} associated with the distributionally robust chance-constraint Xε∗={x∈X:Probμ[f(x,ω)>0]>1-ε,∀μ∈Ma},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbf {X}}^*_\varepsilon \,=\,\{{\mathbf {x}}\in {\mathbf {X}}:\,\mathrm{Prob}_\mu [f({\mathbf {x}},{\omega })\,>\,0]> 1-\varepsilon ,\,\forall \mu \in {\mathscr {M}}_{\mathbf {a}}\}, \end{aligned}$$\end{document}where Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all possibles mixtures of distributions μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\mathbf {a}}$$\end{document}, a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}\in {\mathbf {A}}$$\end{document}. For instance and typically, the family Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all mixtures of Gaussian distributions on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} with mean and standard deviation a=(a,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}=(a,\sigma )$$\end{document} in some compact set A⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}\subset {\mathbb {R}}^2$$\end{document}. We provide a sequence of inner approximations Xεd={x∈X:wd(x)<ε}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^d_\varepsilon =\{{\mathbf {x}}\in {\mathbf {X}}:w_d({\mathbf {x}}) <\varepsilon \}$$\end{document}, d∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document}, where wd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_d$$\end{document} is a polynomial of degree d whose vector of coefficients is an optimal solution of a semidefinite program. The size of the latter increases with the degree d. We also obtain the strong and highly desirable asymptotic guarantee that λ(Xε∗\Xεd)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ({\mathbf {X}}^*_\varepsilon {\setminus } {\mathbf {X}}^d_\varepsilon )\rightarrow 0$$\end{document} as d increases, where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is the Lebesgue measure on X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}$$\end{document}. Same results are also obtained for the more intricated case of distributionally robust “joint” chance-constraints. There is a price to pay for this strong asymptotic guarantee which is the scalability of such a numerical scheme, and so far this important drawback makes it limited to problems of modest dimension.
引用
收藏
页码:409 / 453
页数:44
相关论文
共 50 条
  • [31] Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation
    Jiang, Jie
    Peng, Shen
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 313 (02) : 616 - 627
  • [32] AN EXACT ALGORITHM FOR LINEAR INTEGER PROGRAMMING PROBLEMS WITH DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINTS
    Wang, Fenlan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (09) : 6606 - 6617
  • [33] Data-Driven Distributionally Robust Optimal Power Flow for Distribution Grids Under Wasserstein Ambiguity Sets
    Liu, Fangzhou
    Huo, Jincheng
    Liu, Fengfeng
    Li, Dongliang
    Xue, Dong
    ELECTRONICS, 2025, 14 (04):
  • [34] Distributionally robust joint chance constraints with second-order moment information
    Zymler, Steve
    Kuhn, Daniel
    Rustem, Berc
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 167 - 198
  • [35] Distributionally robust joint chance constraints with second-order moment information
    Steve Zymler
    Daniel Kuhn
    Berç Rustem
    Mathematical Programming, 2013, 137 : 167 - 198
  • [36] A distributionally robust stochastic optimization-based model predictive control with distributionally robust chance constraints for cooperative adaptive cruise control under uncertain traffic conditions
    Zhang, Shuaidong
    Zhao, Kuilin
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2020, 138 : 144 - 178
  • [37] Distributionally robust chance constrained problem under interval distribution information
    Ke-wei Ding
    Ming-hui Wang
    Nan-jing Huang
    Optimization Letters, 2018, 12 : 1315 - 1328
  • [38] Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty
    Ding, Ke-wei
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [39] DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINED PROBLEMS UNDER GENERAL MOMENTS INFORMATION
    Ding, Ke-Wei
    Huang, Nan-Jing
    Xiao, Yi-Bin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (06) : 2923 - 2942
  • [40] Distributionally robust chance constrained problem under interval distribution information
    Ding, Ke-wei
    Wang, Ming-hui
    Huang, Nan-jing
    OPTIMIZATION LETTERS, 2018, 12 (06) : 1315 - 1328