Distributionally robust polynomial chance-constraints under mixture ambiguity sets

被引:0
|
作者
Jean B. Lasserre
Tillmann Weisser
机构
[1] University of Toulouse,LAAS
[2] Los Alamos National Laboratory,CNRS and Institute of Mathematics
来源
Mathematical Programming | 2021年 / 185卷
关键词
90C47; 90C59; 68T37; 90C22; 49M29; 41A29; 65D18;
D O I
暂无
中图分类号
学科分类号
摘要
Given X⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}\subset {\mathbb {R}}^n$$\end{document}, ε∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \in (0,1)$$\end{document}, a parametrized family of probability distributions (μa)a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mu _{{\mathbf {a}}})_{{\mathbf {a}}\in {\mathbf {A}}}$$\end{document} on Ω⊂Rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\Omega }}\subset {\mathbb {R}}^p$$\end{document}, we consider the feasible set Xε∗⊂X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^*_\varepsilon \subset {\mathbf {X}}$$\end{document} associated with the distributionally robust chance-constraint Xε∗={x∈X:Probμ[f(x,ω)>0]>1-ε,∀μ∈Ma},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathbf {X}}^*_\varepsilon \,=\,\{{\mathbf {x}}\in {\mathbf {X}}:\,\mathrm{Prob}_\mu [f({\mathbf {x}},{\omega })\,>\,0]> 1-\varepsilon ,\,\forall \mu \in {\mathscr {M}}_{\mathbf {a}}\}, \end{aligned}$$\end{document}where Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all possibles mixtures of distributions μa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{\mathbf {a}}$$\end{document}, a∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}\in {\mathbf {A}}$$\end{document}. For instance and typically, the family Ma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {M}}_{\mathbf {a}}$$\end{document} is the set of all mixtures of Gaussian distributions on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} with mean and standard deviation a=(a,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {a}}=(a,\sigma )$$\end{document} in some compact set A⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {A}}\subset {\mathbb {R}}^2$$\end{document}. We provide a sequence of inner approximations Xεd={x∈X:wd(x)<ε}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}^d_\varepsilon =\{{\mathbf {x}}\in {\mathbf {X}}:w_d({\mathbf {x}}) <\varepsilon \}$$\end{document}, d∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in {\mathbb {N}}$$\end{document}, where wd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_d$$\end{document} is a polynomial of degree d whose vector of coefficients is an optimal solution of a semidefinite program. The size of the latter increases with the degree d. We also obtain the strong and highly desirable asymptotic guarantee that λ(Xε∗\Xεd)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ({\mathbf {X}}^*_\varepsilon {\setminus } {\mathbf {X}}^d_\varepsilon )\rightarrow 0$$\end{document} as d increases, where λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} is the Lebesgue measure on X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {X}}$$\end{document}. Same results are also obtained for the more intricated case of distributionally robust “joint” chance-constraints. There is a price to pay for this strong asymptotic guarantee which is the scalability of such a numerical scheme, and so far this important drawback makes it limited to problems of modest dimension.
引用
收藏
页码:409 / 453
页数:44
相关论文
共 50 条
  • [1] Distributionally robust polynomial chance-constraints under mixture ambiguity sets
    Lasserre, Jean B.
    Weisser, Tillmann
    MATHEMATICAL PROGRAMMING, 2021, 185 (1-2) : 409 - 453
  • [2] Distributionally robust chance-constrained optimization with Gaussian mixture ambiguity set
    Kammammettu, Sanjula
    Yang, Shu-Bo
    Li, Zukui
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 186
  • [3] Consistency of Distributionally Robust Risk- and Chance-Constrained Optimization under Wasserstein Ambiguity Sets
    Cherukuri, Ashish
    Hota, Ashish R.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 3818 - 3823
  • [4] Consistency of Distributionally Robust Risk- and Chance-Constrained Optimization Under Wasserstein Ambiguity Sets
    Cherukuri, Ashish
    Hota, Ashish R.
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05): : 1729 - 1734
  • [5] Distributionally Robust Optimization with Moment Ambiguity Sets
    Nie, Jiawang
    Yang, Liu
    Zhong, Suhan
    Zhou, Guangming
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (01)
  • [6] Distributionally Robust Optimization with Moment Ambiguity Sets
    Jiawang Nie
    Liu Yang
    Suhan Zhong
    Guangming Zhou
    Journal of Scientific Computing, 2023, 94
  • [7] Stochastic MPC with Distributionally Robust Chance Constraints
    Mark, Christoph
    Liu, Steven
    IFAC PAPERSONLINE, 2020, 53 (02): : 7136 - 7141
  • [8] Games with distributionally robust joint chance constraints
    Peng, Shen
    Lisser, Abdel
    Singh, Vikas Vikram
    Gupta, Nalin
    Balachandar, Eshan
    OPTIMIZATION LETTERS, 2021, 15 (06) : 1931 - 1953
  • [9] Games with distributionally robust joint chance constraints
    Shen Peng
    Abdel Lisser
    Vikas Vikram Singh
    Nalin Gupta
    Eshan Balachandar
    Optimization Letters, 2021, 15 : 1931 - 1953
  • [10] Distributionally robust optimization with decision dependent ambiguity sets
    Fengqiao Luo
    Sanjay Mehrotra
    Optimization Letters, 2020, 14 : 2565 - 2594