Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

被引:0
|
作者
Fedor V. Fomin
Daniel Lokshtanov
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] University of California,The Institute of Mathematical Sciences
[3] HBNI,undefined
[4] Ben-Gurion University of the Negev,undefined
来源
关键词
Longest path; Longest cycle; Cycle packing; Feedback vertex set; Unit disk graph; Unit square graph; Parameterized complexity; 68W01; 68W40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We give algorithms with running time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}({\sqrt{k}\log {k}})} \cdot n^{\mathcal {O}(1)}$$\end{document} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G containsa path on exactly/at least k vertices,a cycle on exactly k vertices,a cycle on at least k vertices,a feedback vertex set of size at most k, anda set of k pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2O(k0.75logk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k^{0.75}\log {k})} \cdot n^{\mathcal {O}(1)}$$\end{document}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\mathcal {O}(1)}$$\end{document} and there exists a solution that crosses every separator at most O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\sqrt{k})$$\end{document} times. The running times of our algorithms are optimal up to the logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {k}$$\end{document} factor in the exponent, assuming the exponential time hypothesis.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 50 条
  • [41] Approximation algorithms for unit disk graphs
    van Leeuwen, EJ
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2005, 3787 : 351 - 361
  • [42] Network Localization on Unit Disk Graphs
    Kaewprapha, Phisan
    Li , Jing
    Puttarak, Nattakan
    2011 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE (GLOBECOM 2011), 2011,
  • [43] Hierarchically specified unit disk graphs
    Marathe, MV
    Radhakrishnan, V
    Hunt, HB
    Ravi, SS
    THEORETICAL COMPUTER SCIENCE, 1997, 174 (1-2) : 23 - 65
  • [44] The hitting time of random walk on unicyclic graphs
    Zhu, Xiaomin
    Zhang, Xiao-Dong
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04): : 573 - 592
  • [45] Improper Coloring of Unit Disk Graphs
    Havet, Frederic
    Kang, Ross J.
    Sereni, Jean-Sebastien
    NETWORKS, 2009, 54 (03) : 150 - 164
  • [46] Expected hitting time estimates on finite graphs
    Saloff-Coste, Laurent
    Wang, Yuwen
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2025, 185
  • [47] Subexponential Time Algorithms for Finding Small Tree and Path Decompositions
    Bodlaender, Hans L.
    Nederlof, Jesper
    ALGORITHMS - ESA 2015, 2015, 9294 : 179 - 190
  • [48] Algorithms for Finding Diameter Cycles of Biconnected Graphs
    Karaata M.H.
    Journal of Computing and Information Technology, 2020, 28 (04) : 225 - 240
  • [49] FINDING CYCLES WITH TOPOLOGICAL PROPERTIES IN EMBEDDED GRAPHS
    Cabello, Sergio
    de Verdiere, Eric Colin
    Lazarus, Francis
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (04) : 1600 - 1614
  • [50] FINDING HAMILTONIAN CYCLES IN CERTAIN PLANAR GRAPHS
    CIMIKOWSKI, RJ
    INFORMATION PROCESSING LETTERS, 1990, 35 (05) : 249 - 254