Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

被引:0
|
作者
Fedor V. Fomin
Daniel Lokshtanov
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] University of California,The Institute of Mathematical Sciences
[3] HBNI,undefined
[4] Ben-Gurion University of the Negev,undefined
来源
关键词
Longest path; Longest cycle; Cycle packing; Feedback vertex set; Unit disk graph; Unit square graph; Parameterized complexity; 68W01; 68W40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We give algorithms with running time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}({\sqrt{k}\log {k}})} \cdot n^{\mathcal {O}(1)}$$\end{document} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G containsa path on exactly/at least k vertices,a cycle on exactly k vertices,a cycle on at least k vertices,a feedback vertex set of size at most k, anda set of k pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2O(k0.75logk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k^{0.75}\log {k})} \cdot n^{\mathcal {O}(1)}$$\end{document}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\mathcal {O}(1)}$$\end{document} and there exists a solution that crosses every separator at most O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\sqrt{k})$$\end{document} times. The running times of our algorithms are optimal up to the logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {k}$$\end{document} factor in the exponent, assuming the exponential time hypothesis.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 50 条
  • [21] Linear-Time Approximation Algorithms for Unit Disk Graphs
    da Fonseca, Guilherme D.
    Pereira de Sa, Vinicius G.
    de Figueiredo, Celina M. H.
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 132 - 143
  • [22] Finding Hamiltonian cycles of truncated rectangular grid graphs in linear time
    Keshavarz-Kohjerdi, Fatemeh
    Bagheri, Alireza
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 436
  • [23] Bisectored unit disk graphs
    Nolan, J
    NETWORKS, 2004, 43 (03) : 141 - 152
  • [24] Routing in Unit Disk Graphs
    Kaplan, Haim
    Mulzer, Wolfgang
    Roditty, Liam
    Seiferth, Paul
    ALGORITHMICA, 2018, 80 (03) : 830 - 848
  • [25] On Coloring Unit Disk Graphs
    A. Gräf
    M. Stumpf
    G. Weißenfels
    Algorithmica, 1998, 20 : 277 - 293
  • [26] On coloring unit disk graphs
    Graf, A
    Stumpf, M
    Weissenfels, G
    ALGORITHMICA, 1998, 20 (03) : 277 - 293
  • [27] Routing in Unit Disk Graphs
    Haim Kaplan
    Wolfgang Mulzer
    Liam Roditty
    Paul Seiferth
    Algorithmica, 2018, 80 : 830 - 848
  • [28] On Guha and Khuller's Greedy Algorithm for Finding a Minimum CDS for Unit Disk Graphs
    Fujita, Satoshi
    2014 SECOND INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2014, : 60 - 67
  • [29] HITTING TIME OF EDGE DISJOINT HAMILTON CYCLES IN RANDOM SUBGRAPH PROCESSES ON DENSE BASE GRAPHS
    Alon, Yahav
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 728 - 754
  • [30] Counting and packing Hamilton cycles in dense graphs and oriented graphs
    Ferber, Asaf
    Krivelevich, Michael
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 196 - 220