Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

被引:0
|
作者
Fedor V. Fomin
Daniel Lokshtanov
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] University of California,The Institute of Mathematical Sciences
[3] HBNI,undefined
[4] Ben-Gurion University of the Negev,undefined
来源
关键词
Longest path; Longest cycle; Cycle packing; Feedback vertex set; Unit disk graph; Unit square graph; Parameterized complexity; 68W01; 68W40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We give algorithms with running time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}({\sqrt{k}\log {k}})} \cdot n^{\mathcal {O}(1)}$$\end{document} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G containsa path on exactly/at least k vertices,a cycle on exactly k vertices,a cycle on at least k vertices,a feedback vertex set of size at most k, anda set of k pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2O(k0.75logk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k^{0.75}\log {k})} \cdot n^{\mathcal {O}(1)}$$\end{document}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\mathcal {O}(1)}$$\end{document} and there exists a solution that crosses every separator at most O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\sqrt{k})$$\end{document} times. The running times of our algorithms are optimal up to the logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {k}$$\end{document} factor in the exponent, assuming the exponential time hypothesis.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 50 条
  • [31] Subexponential Parameterized Algorithms for Cut and Cycle Hitting Problems on H-Minor-Free Graphs
    Bandyapadhyay, Sayan
    Lochet, William
    Lokshtanov, Daniel
    Saurabh, Saket
    Xue, Jie
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2063 - 2084
  • [32] Finding Large Cycles in Hamiltonian Graphs
    Feder, Tomas
    Motwani, Rajeev
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 166 - 175
  • [33] Finding large cycles in Hamiltonian graphs
    Feder, Tomas
    Motwani, Rajeev
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (08) : 882 - 893
  • [34] On Finding Hamiltonian Cycles in Barnette Graphs
    Bagheri, Behrooz Gh
    Fleischner, Herbert
    Feder, Tomas
    Subi, Carlos
    FUNDAMENTA INFORMATICAE, 2022, 188 (01) : 1 - 14
  • [35] Induced packing of odd cycles in planar graphs
    Golovach, Petr A.
    Kaminski, Marcin
    Paulusma, Daniel
    Thilikos, Dimitrios M.
    THEORETICAL COMPUTER SCIENCE, 2012, 420 : 28 - 35
  • [36] Packing and finding paths in sparse random graphs
    Iršič, Vesna
    Portier, Julien
    Versteegen, Leo
    arXiv,
  • [38] Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes
    Balasundaram, Balabhaskar
    Chandramouli, Shyam Sundar
    Trukhanov, Svyatoslav
    OPTIMIZATION LETTERS, 2010, 4 (03) : 311 - 320
  • [39] Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes
    Balabhaskar Balasundaram
    Shyam Sundar Chandramouli
    Svyatoslav Trukhanov
    Optimization Letters, 2010, 4 : 311 - 320
  • [40] SIMPLE HEURISTICS FOR UNIT DISK GRAPHS
    MARATHE, MV
    BREU, H
    HUNT, HB
    RAVI, SS
    ROSENKRANTZ, DJ
    NETWORKS, 1995, 25 (02) : 59 - 68