Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

被引:0
|
作者
Fedor V. Fomin
Daniel Lokshtanov
Fahad Panolan
Saket Saurabh
Meirav Zehavi
机构
[1] University of Bergen,Department of Informatics
[2] University of California,The Institute of Mathematical Sciences
[3] HBNI,undefined
[4] Ben-Gurion University of the Negev,undefined
来源
关键词
Longest path; Longest cycle; Cycle packing; Feedback vertex set; Unit disk graph; Unit square graph; Parameterized complexity; 68W01; 68W40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We give algorithms with running time 2O(klogk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}({\sqrt{k}\log {k}})} \cdot n^{\mathcal {O}(1)}$$\end{document} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G containsa path on exactly/at least k vertices,a cycle on exactly k vertices,a cycle on at least k vertices,a feedback vertex set of size at most k, anda set of k pairwise vertex-disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2O(k0.75logk)·nO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{\mathcal {O}(k^{0.75}\log {k})} \cdot n^{\mathcal {O}(1)}$$\end{document}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to kO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\mathcal {O}(1)}$$\end{document} and there exists a solution that crosses every separator at most O(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\sqrt{k})$$\end{document} times. The running times of our algorithms are optimal up to the logk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log {k}$$\end{document} factor in the exponent, assuming the exponential time hypothesis.
引用
收藏
页码:879 / 911
页数:32
相关论文
共 50 条
  • [1] Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    Zehavi, Meirav
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 62 (04) : 879 - 911
  • [2] Counting Cycles on Planar Graphs in Subexponential Time
    Jin-Yi Cai
    Ashwin Maran
    Algorithmica, 2024, 86 : 656 - 693
  • [3] Counting Cycles on Planar Graphs in Subexponential Time
    Cai, Jin-Yi
    Maran, Ashwin
    ALGORITHMICA, 2024, 86 (02) : 656 - 693
  • [4] Counting Cycles on Planar Graphs in Subexponential Time
    Cai, Jin-Yi
    Maran, Ashwin
    COMPUTING AND COMBINATORICS, COCOON 2022, 2022, 13595 : 268 - 279
  • [5] EPTAS and Subexponential Algorithm for Maximum Clique on Disk and Unit Ball Graphs
    Bonamy, Marthe
    Bonnet, Edouard
    Bousquet, Nicolas
    Charbit, Pierre
    Giannopoulos, Panos
    Kim, Eun Jung
    Rzazewski, Pawel
    Sikora, Florian
    Thomasse, Stephan
    JOURNAL OF THE ACM, 2021, 68 (02)
  • [6] Distributed approximations for packing in unit-disk graphs
    Czygrinow, Andrzej
    Hanckowiak, Michal
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2007, 4731 : 152 - +
  • [7] Packing cycles in graphs
    Ding, GL
    Zang, WN
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) : 381 - 407
  • [8] Finding hitting times in various graphs
    Rao, Shravas K.
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (09) : 2067 - 2072
  • [9] Subexponential Parameterized Algorithms on Disk Graphs (Extended Abstract)
    Lokshtanov, Daniel
    Panolan, Fahad
    Saurabh, Saket
    Xue, Jie
    Zehavi, Meirav
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2005 - 2031
  • [10] Packing cycles in undirected graphs
    Caprara, A
    Panconesi, A
    Rizzi, R
    JOURNAL OF ALGORITHMS, 2003, 48 (01) : 239 - 256