Injective Colorings of Graphs with Low Average Degree

被引:0
|
作者
Daniel W. Cranston
Seog-Jin Kim
Gexin Yu
机构
[1] Virginia Commonwealth University,Department of Mathematics & Applied Mathematics
[2] Rutgers University,DIMACS
[3] Konkuk University,undefined
[4] College of William and Mary,undefined
来源
Algorithmica | 2011年 / 60卷
关键词
Injective coloring; Discharging method; Maximum average degree; List coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let mad (G) denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if Δ≥4 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)<\frac{14}{5}$\end{document}, then χi(G)≤Δ+2. When Δ=3, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)<\frac{36}{13}$\end{document} implies χi(G)≤5. In contrast, we give a graph G with Δ=3, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)=\frac{36}{13}$\end{document}, and χi(G)=6.
引用
收藏
页码:553 / 568
页数:15
相关论文
共 50 条
  • [41] Injective edge coloring of graphs with maximum degree 5?
    Zhu, Junlei
    DISCRETE APPLIED MATHEMATICS, 2023, 334 : 119 - 126
  • [42] Linear list colorings of graphs with maximum average degrees bounded
    Chen, Ming
    Li, Yusheng
    ARS COMBINATORIA, 2019, 147 : 313 - 322
  • [43] Injective Colorings with Arithmetic Constraints
    N. Astromujoff
    M. Chapelle
    M. Matamala
    I. Todinca
    J. Zamora
    Graphs and Combinatorics, 2015, 31 : 2003 - 2017
  • [44] Injective Colorings with Arithmetic Constraints
    Astromujoff, N.
    Chapelle, M.
    Matamala, M.
    Todinca, I.
    Zamora, J.
    GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2003 - 2017
  • [45] Average eccentricity, minimum degree and maximum degree in graphs
    P. Dankelmann
    F. J. Osaye
    Journal of Combinatorial Optimization, 2020, 40 : 697 - 712
  • [46] Counterexamples to a conjecture on injective colorings
    Luzar, Borut
    Skrekovski, Riste
    ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (02) : 291 - 295
  • [47] Average eccentricity, minimum degree and maximum degree in graphs
    Dankelmann, P.
    Osaye, F. J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (03) : 697 - 712
  • [48] On the average degree of critical graphs with maximum degree Six
    Miao, Lianying
    Qu, Jibin
    Sun, Qingbo
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2574 - 2576
  • [49] On Omega Index and Average Degree of Graphs
    Delen, Sadik
    Demirci, Musa
    Cevik, Ahmet Sinan
    Cangul, Ismail Naci
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [50] Total colorings of planar graphs with maximum degree at least 8
    Lan Shen
    YingQian Wang
    Science in China Series A: Mathematics, 2009, 52 : 1733 - 1742