Injective coloring;
Discharging method;
Maximum average degree;
List coloring;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let mad (G) denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if Δ≥4 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathrm{mad}(G)<\frac{14}{5}$\end{document}, then χi(G)≤Δ+2. When Δ=3, we show that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathrm{mad}(G)<\frac{36}{13}$\end{document} implies χi(G)≤5. In contrast, we give a graph G with Δ=3, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathrm{mad}(G)=\frac{36}{13}$\end{document}, and χi(G)=6.
机构:
Univ Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, SlovakiaUniv Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, Slovakia
Miskuf, Jozef
Skrekovski, Riste
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Dept Math, Fac Math & Phys, Ljubljana 1000, SloveniaUniv Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, Slovakia
Skrekovski, Riste
Tancer, Martin
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Dept Appl Math, Fac Math & Phys, CR-11800 Prague, Czech Republic
Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech RepublicUniv Pavol Jozef Safarik, Fac Sci, Inst Math, Kosice 04154, Slovakia