Injective Colorings of Graphs with Low Average Degree

被引:0
|
作者
Daniel W. Cranston
Seog-Jin Kim
Gexin Yu
机构
[1] Virginia Commonwealth University,Department of Mathematics & Applied Mathematics
[2] Rutgers University,DIMACS
[3] Konkuk University,undefined
[4] College of William and Mary,undefined
来源
Algorithmica | 2011年 / 60卷
关键词
Injective coloring; Discharging method; Maximum average degree; List coloring;
D O I
暂无
中图分类号
学科分类号
摘要
Let mad (G) denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if Δ≥4 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)<\frac{14}{5}$\end{document}, then χi(G)≤Δ+2. When Δ=3, we show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)<\frac{36}{13}$\end{document} implies χi(G)≤5. In contrast, we give a graph G with Δ=3, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathrm{mad}(G)=\frac{36}{13}$\end{document}, and χi(G)=6.
引用
收藏
页码:553 / 568
页数:15
相关论文
共 50 条
  • [31] On approximately counting colorings of small degree graphs
    Bubley, Russ
    Dyer, Martin
    Greenhill, Catherine
    Jerrum, Mark
    SIAM Journal on Computing, 29 (02): : 387 - 400
  • [32] Polychromatic Colorings of Bounded Degree Plane Graphs
    Horev, Ellad
    Krakovski, Roi
    JOURNAL OF GRAPH THEORY, 2009, 60 (04) : 269 - 283
  • [33] Colorings and homomorphisms of degenerate and bounded degree graphs
    Kostochka, A
    Nesetril, J
    Smolíková, P
    DISCRETE MATHEMATICS, 2001, 233 (1-3) : 257 - 276
  • [34] On approximately counting colorings of small degree graphs
    Bubley, R
    Dyer, M
    Greenhill, C
    Jerrum, M
    SIAM JOURNAL ON COMPUTING, 1999, 29 (02) : 387 - 400
  • [35] H-colorings of large degree graphs
    Díaz, J
    Nesetril, J
    Serna, M
    Thilikos, DM
    EURASIA-ICT 2002: INFORMATION AND COMMUNICATION TECHNOLOGY, PROCEEDINGS, 2002, 2510 : 850 - 857
  • [36] Products of distance degree regular and distance degree injective graphs
    Huilgol, Medha Itagi
    Rajeshwari, M.
    Ulla, S. Syed Asif
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (4-5): : 303 - 314
  • [37] ALMOST INJECTIVE COLORINGS
    Goddard, Wayne
    Melville, Robert
    Xu, Honghai
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 225 - 239
  • [38] Total colorings of planar graphs with large maximum degree
    Borodin, OV
    Kostochka, AV
    Woodall, DR
    JOURNAL OF GRAPH THEORY, 1997, 26 (01) : 53 - 59
  • [39] Edge colorings of planar graphs with maximum degree five
    Wu, Jian-Liang
    Wu, Yu-Wen
    ARS COMBINATORIA, 2011, 98 : 183 - 191
  • [40] Total Colorings of Planar Graphs with Small Maximum Degree
    Wang, Bing
    Wu, Jian-Liang
    Tian, Si-Feng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 783 - 787