Limits of the boundary of random planar maps

被引:0
|
作者
Loïc Richier
机构
[1] CMAP,
[2] École polytechnique,undefined
来源
关键词
05C80; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}. First, in the dense phase corresponding to α∈(1,3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,3/2)$$\end{document}, we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(\alpha -1/2)$$\end{document}. Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α∈(3/2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (3/2,2)$$\end{document}, it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} loop model on quadrangulations, proving thereby a conjecture of Curien and Kortchemski.
引用
收藏
页码:789 / 827
页数:38
相关论文
共 50 条
  • [41] Area distribution of the planar random loop boundary
    Richard, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (16): : 4493 - 4500
  • [42] Scaling limit of random planar quadrangulations with a boundary
    Bettinelli, Jeremie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 432 - 477
  • [43] On scaling limits of planar maps with stable face-degrees
    Marzouk, Cyril
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1089 - 1122
  • [44] Random planar maps and graphs with minimum degree two and three
    Noy, Marc
    Ramos, Lander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [45] Radius and profile of random planar maps with faces of arbitrary degrees
    Miermont, Gregory
    Weill, Mathilde
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 79 - 106
  • [46] The six-vertex model on random planar maps revisited
    Price, Andrew Elvey
    Zinn-Justin, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 196
  • [47] LARGE DEVIATION LOCAL LIMIT THEOREMS AND LIMITS OF BICONDITIONED PLANAR MAPS
    Kortchemski, Igor
    Marzouk, Cyril
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (05): : 3755 - 3802
  • [48] Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere
    Le Gall, Jean-Francois
    Paulin, Frederic
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2008, 18 (03) : 893 - 918
  • [49] Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere
    Jean-François Le Gall
    Frédéric Paulin
    Geometric and Functional Analysis, 2008, 18 : 893 - 918
  • [50] Detecting the boundary curve of planar random point set
    Imiya, A
    Tatara, K
    Ootani, H
    Hlavác, V
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, PROCEEDINGS, 2003, 2734 : 413 - 424