Limits of the boundary of random planar maps

被引:0
|
作者
Loïc Richier
机构
[1] CMAP,
[2] École polytechnique,undefined
来源
关键词
05C80; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}. First, in the dense phase corresponding to α∈(1,3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,3/2)$$\end{document}, we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(\alpha -1/2)$$\end{document}. Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α∈(3/2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (3/2,2)$$\end{document}, it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} loop model on quadrangulations, proving thereby a conjecture of Curien and Kortchemski.
引用
收藏
页码:789 / 827
页数:38
相关论文
共 50 条
  • [21] MARKOVIAN EXPLORATIONS OF RANDOM PLANAR MAPS ARE ROUNDISH
    Curien, Nicolas
    Marzouk, Cyril
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (04): : 709 - 732
  • [22] Invariance principles for random bipartite planar maps
    Marckert, Jean-Francois
    Miermont, Gregory
    ANNALS OF PROBABILITY, 2007, 35 (05): : 1642 - 1705
  • [23] A Glimpse of the Conformal Structure of Random Planar Maps
    Curien, Nicolas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) : 1417 - 1463
  • [24] Hamiltonian cycles on bicolored random planar maps
    Duplantier, Bertrand
    Golinelli, Olivier
    Guitter, Emmanuel
    NUCLEAR PHYSICS B, 2023, 995
  • [25] RANDOM PLANAR MAPS AND GROWTH-FRAGMENTATIONS
    Bertoin, Jean
    Curien, Nicolas
    Kortchemski, Igor
    ANNALS OF PROBABILITY, 2018, 46 (01): : 207 - 260
  • [26] DUALITY OF RANDOM PLANAR MAPS VIA PERCOLATION
    Curien, Nicolas
    Richier, Loic
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (06) : 2425 - 2471
  • [27] The size of the largest components in random planar maps
    Gao, ZC
    Wormald, NC
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (02) : 217 - 228
  • [28] On the sphericity of scaling limits of random planar quadrangulations
    Miermont, Gregory
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 248 - 257
  • [29] A census of boundary cubic rooted planar maps
    Liu, Wenzhong
    Liu, Yanpei
    Xu, Yan
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (13) : 1678 - 1688
  • [30] The topological structure of scaling limits of large planar maps
    Le Gall, Jean-Francois
    INVENTIONES MATHEMATICAE, 2007, 169 (03) : 621 - 670