We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α∈(1,2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in (1,2)$$\end{document}. First, in the dense phase corresponding to α∈(1,3/2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in (1,3/2)$$\end{document}, we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α-1/2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1/(\alpha -1/2)$$\end{document}. Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α∈(3/2,2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha \in (3/2,2)$$\end{document}, it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(n)$$\end{document} loop model on quadrangulations, proving thereby a conjecture of Curien and Kortchemski.