Limits of the boundary of random planar maps

被引:0
|
作者
Loïc Richier
机构
[1] CMAP,
[2] École polytechnique,undefined
来源
关键词
05C80; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss asymptotics for the boundary of critical Boltzmann planar maps under the assumption that the distribution of the degree of a typical face is in the domain of attraction of a stable distribution with parameter α∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,2)$$\end{document}. First, in the dense phase corresponding to α∈(1,3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (1,3/2)$$\end{document}, we prove that the scaling limit of the boundary is the random stable looptree with parameter 1/(α-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/(\alpha -1/2)$$\end{document}. Second, we show the existence of a phase transition through local limits of the boundary: in the dense phase, the boundary is tree-like, while in the dilute phase corresponding to α∈(3/2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (3/2,2)$$\end{document}, it has a component homeomorphic to the half-plane. As an application, we identify the limits of loops conditioned to be large in the rigid O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} loop model on quadrangulations, proving thereby a conjecture of Curien and Kortchemski.
引用
收藏
页码:789 / 827
页数:38
相关论文
共 50 条
  • [1] Limits of the boundary of random planar maps
    Richier, Loic
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 172 (3-4) : 789 - 827
  • [2] Large random planar maps and their scaling limits
    Le Gall, Jean-Francois
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 253 - 276
  • [3] SCALING LIMITS OF RANDOM PLANAR MAPS WITH LARGE FACES
    Le Gall, Jean-Francois
    Miermont, Gregory
    ANNALS OF PROBABILITY, 2011, 39 (01): : 1 - 69
  • [4] Boundary States of the Potts Model on Random Planar Maps
    Niedner, Benjamin
    Atkin, Max R.
    Wheater, John F.
    1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS, 2016, 170 : 387 - 393
  • [5] SCALING LIMITS OF RANDOM PLANAR MAPS WITH A UNIQUE LARGE FACE
    Janson, Svante
    Stefansson, Sigurdur Orn
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1045 - 1081
  • [6] Scaling limits of random bipartite planar maps with a prescribed degree sequence
    Marzouk, Cyril
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (03) : 448 - 503
  • [7] Random Maps and Their Scaling Limits
    Miermont, Gregory
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 197 - 224
  • [8] Random Cubic Planar Maps
    Drmota, Michael
    Noy, Marc
    Requile, Clement
    Rue, Juanjo
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [9] Recurrence of Random Planar Maps
    Nachmias, Asaf
    PLANAR MAPS, RANDOM WALKS AND CIRCLE PACKING: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLVIII - 2018, 2020, 2243 : 73 - 87
  • [10] Sandpiles and unicycles on random planar maps
    Sun, Xin
    Wilson, David B.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21