Polynomial Inequalities with an Exponential Weight on (0,+∞)

被引:0
|
作者
Giuseppe Mastroianni
Incoronata Notarangelo
József Szabados
机构
[1] University of Basilicata,Department of Mathematics and Computer Sciences
[2] Alfréd Rényi Institute of Mathematics,undefined
来源
关键词
41A17; Weighted polynomial inequalities; exponential weights; realsemiaxis; unbounded intervals; Remez inequality; Bernstein–Markoff inequalities; Schur inequality; Nikolskii inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{u(x) = x^{\gamma} e^{-x^{-\alpha}-x^{\beta}}}}$$\end{document} , with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x \in(0,+\infty)}}$$\end{document} , α >  0, β >  1 and γ ≥  0 and prove Remez-, Bernstein–Markoff-, Schurand Nikolskii-type inequalities for algebraic polynomials with the weight u on (0, + ∞).
引用
收藏
页码:807 / 821
页数:14
相关论文
共 50 条
  • [1] Polynomial Inequalities with an Exponential Weight on (0,+∞)
    Mastroianni, Giuseppe
    Notarangelo, Incoronata
    Szabados, Jozsef
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (02) : 807 - 821
  • [2] On Polynomial Inequalities on Exponential Curves in Cn
    Bos, L. P.
    Brudnyi, A.
    Levenberg, N.
    CONSTRUCTIVE APPROXIMATION, 2010, 31 (01) : 139 - 147
  • [3] On Polynomial Inequalities on Exponential Curves in ℂn
    L. P. Bos
    A. Brudnyi
    N. Levenberg
    Constructive Approximation, 2010, 31 : 139 - 147
  • [4] Exponential polynomial inequalities and monomial sum inequalities in p-Newton sequences
    Johnson, Charles R.
    Marijuan, Carlos
    Pisonero, Miriam
    Yeh, Michael
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 793 - 819
  • [5] Exponential polynomial inequalities and monomial sum inequalities in p-Newton sequences
    Charles R. Johnson
    Carlos Marijuán
    Miriam Pisonero
    Michael Yeh
    Czechoslovak Mathematical Journal, 2016, 66 : 793 - 819
  • [6] Polynomial approximation with an exponential weight on the real semiaxis
    Giuseppe Mastroianni
    Incoronata Notarangelo
    Acta Mathematica Hungarica, 2014, 142 : 167 - 198
  • [7] POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT ON THE REAL SEMIAXIS
    Mastroianni, G.
    Notarangelo, I.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 167 - 198
  • [8] Polynomial inequalities and embedding theorems with exponential weights on (-1,1)
    Notarangelo, I.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (03) : 286 - 306
  • [9] Polynomial inequalities and embedding theorems with exponential weights on (−1,1)
    I. Notarangelo
    Acta Mathematica Hungarica, 2012, 134 : 286 - 306
  • [10] IMMANANT INEQUALITIES AND 0-WEIGHT SPACES
    KOSTANT, B
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (01) : 181 - 186