Polynomial Inequalities with an Exponential Weight on (0,+∞)

被引:0
|
作者
Giuseppe Mastroianni
Incoronata Notarangelo
József Szabados
机构
[1] University of Basilicata,Department of Mathematics and Computer Sciences
[2] Alfréd Rényi Institute of Mathematics,undefined
来源
关键词
41A17; Weighted polynomial inequalities; exponential weights; realsemiaxis; unbounded intervals; Remez inequality; Bernstein–Markoff inequalities; Schur inequality; Nikolskii inequalities;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{u(x) = x^{\gamma} e^{-x^{-\alpha}-x^{\beta}}}}$$\end{document} , with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{x \in(0,+\infty)}}$$\end{document} , α >  0, β >  1 and γ ≥  0 and prove Remez-, Bernstein–Markoff-, Schurand Nikolskii-type inequalities for algebraic polynomials with the weight u on (0, + ∞).
引用
收藏
页码:807 / 821
页数:14
相关论文
共 50 条
  • [21] Exponential integral inequalities
    Wilkins, JE
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (10): : 960 - 960
  • [22] Inequalities for exponential sums
    Erdelyi, T.
    SBORNIK MATHEMATICS, 2017, 208 (03) : 433 - 464
  • [23] Exponential and Information Inequalities
    Massart, Pascal
    CONCENTRATION INEQUALITIES AND MODEL SELECTION: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XXXIII - 2003, 2007, 1896 : 15 - 51
  • [24] Inequalities for the exponential function
    Alzer, Horst
    JAEN JOURNAL ON APPROXIMATION, 2019, 11 (1-2): : 31 - 45
  • [25] Exponential probabilistic inequalities
    Ho, Kwok-Pun
    LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (04) : 399 - 407
  • [26] Exponential Inequalities and Corollaries
    Plaza, Angel
    AMERICAN MATHEMATICAL MONTHLY, 2021, 128 (02): : 162 - 162
  • [27] Inequalities for the derivative of a polynomial
    Aziz, A
    Ahmad, N
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 189 - 196
  • [28] Inequalities for polynomial splines
    N. P. Korneichuk
    Ukrainian Mathematical Journal, 2000, 52 (1) : 62 - 70
  • [29] Inequalities for the Derivative of a Polynomial
    Gulzar, M. H.
    Zargar, B. A.
    Akhter, Rubia
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2021, 45 (04) : 497 - 508
  • [30] Polynomial Bell Inequalities
    Chaves, Rafael
    PHYSICAL REVIEW LETTERS, 2016, 116 (01)