Polynomial approximation with an exponential weight on the real semiaxis

被引:0
|
作者
Giuseppe Mastroianni
Incoronata Notarangelo
机构
[1] University of Basilicata,Department of Mathematics, Computer Sciences and Economics
来源
Acta Mathematica Hungarica | 2014年 / 142卷
关键词
weighted polynomial approximation; exponential weight; unbounded interval; Jackson theorem; Stechkin inequality; 41A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the polynomial approximation on (0,+∞), with the weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u(x)= x^{\gamma}e^{-x^{-\alpha}-x^{\beta}}$\end{document}, α>0, β>1 and γ≧0. We introduce new moduli of smoothness and related K-functionals for functions defined on the real semiaxis, which can grow exponentially both at 0 and at +∞. Then we prove the Jackson theorem, also in its weaker form, and the Stechkin inequality. Moreover, we study the behavior of the derivatives of polynomials of best approximation.
引用
收藏
页码:167 / 198
页数:31
相关论文
共 50 条