Polynomial Inequalities with an Exponential Weight on (0,+∞)

被引:6
|
作者
Mastroianni, Giuseppe [1 ]
Notarangelo, Incoronata [1 ]
Szabados, Jozsef [2 ]
机构
[1] Univ Basilicata, Dept Math & Comp Sci, I-85100 Potenza, Italy
[2] Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
Weighted polynomial inequalities; exponential weights; real semiaxis; unbounded intervals; Remez inequality; Bernstein-Markoff inequalities; Schur inequality; Nikolskii inequalities; APPROXIMATION;
D O I
10.1007/s00009-012-0231-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the weight , with , alpha > 0, beta > 1 and gamma a parts per thousand yen 0 and prove Remez-, Bernstein-Markoff-, Schurand Nikolskii-type inequalities for algebraic polynomials with the weight u on (0, + infinity).
引用
收藏
页码:807 / 821
页数:15
相关论文
共 50 条
  • [1] Polynomial Inequalities with an Exponential Weight on (0,+∞)
    Giuseppe Mastroianni
    Incoronata Notarangelo
    József Szabados
    Mediterranean Journal of Mathematics, 2013, 10 : 807 - 821
  • [2] On Polynomial Inequalities on Exponential Curves in Cn
    Bos, L. P.
    Brudnyi, A.
    Levenberg, N.
    CONSTRUCTIVE APPROXIMATION, 2010, 31 (01) : 139 - 147
  • [3] On Polynomial Inequalities on Exponential Curves in ℂn
    L. P. Bos
    A. Brudnyi
    N. Levenberg
    Constructive Approximation, 2010, 31 : 139 - 147
  • [4] Exponential polynomial inequalities and monomial sum inequalities in p-Newton sequences
    Johnson, Charles R.
    Marijuan, Carlos
    Pisonero, Miriam
    Yeh, Michael
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 793 - 819
  • [5] Exponential polynomial inequalities and monomial sum inequalities in p-Newton sequences
    Charles R. Johnson
    Carlos Marijuán
    Miriam Pisonero
    Michael Yeh
    Czechoslovak Mathematical Journal, 2016, 66 : 793 - 819
  • [6] Polynomial approximation with an exponential weight on the real semiaxis
    Giuseppe Mastroianni
    Incoronata Notarangelo
    Acta Mathematica Hungarica, 2014, 142 : 167 - 198
  • [7] POLYNOMIAL APPROXIMATION WITH AN EXPONENTIAL WEIGHT ON THE REAL SEMIAXIS
    Mastroianni, G.
    Notarangelo, I.
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 167 - 198
  • [8] Polynomial inequalities and embedding theorems with exponential weights on (-1,1)
    Notarangelo, I.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (03) : 286 - 306
  • [9] Polynomial inequalities and embedding theorems with exponential weights on (−1,1)
    I. Notarangelo
    Acta Mathematica Hungarica, 2012, 134 : 286 - 306
  • [10] IMMANANT INEQUALITIES AND 0-WEIGHT SPACES
    KOSTANT, B
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (01) : 181 - 186