Remarks on quantum Markov states

被引:0
|
作者
Z. I. Bezhaeva
V. I. Oseledets
机构
[1] National Research University Higher School of Economics,Financial University
[2] Lomonosov Moscow State University,undefined
来源
Functional Analysis and Its Applications | 2015年 / 49卷
关键词
*-algebra; state on ; *-algebra; density matrix; quantum Markov state; von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{{d^n}}}$$\end{document}. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [41] QUANTUM CHAOS - REMARKS
    PECHUKAS, P
    JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (21): : 4823 - 4829
  • [42] Remarks on Quantum Integration
    Chryssomalis Chryssomalakos
    Communications in Mathematical Physics, 1997, 184 : 1 - 25
  • [43] Remarks on quantum statistics
    Marcinek, W
    PARTICLES, FIELDS, AND GRAVITATION, 1998, 453 : 86 - 96
  • [44] REMARKS ON QUANTUM SYMMETRY
    REHREN, KH
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1992, 42 (12) : 1353 - 1360
  • [45] Remarks on quantum ontology
    Krause, D
    SYNTHESE, 2000, 125 (1-2) : 155 - 167
  • [46] REMARKS ON QUANTUM ERGODICITY
    Riviere, Gabriel
    JOURNAL OF MODERN DYNAMICS, 2013, 7 (01) : 119 - 133
  • [47] REMARKS ON QUANTUM HYDRODYNAMICS
    ITO, H
    PROGRESS OF THEORETICAL PHYSICS, 1955, 13 (05): : 543 - 554
  • [48] Remarks on quantum integration
    Chryssomalakos, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (01) : 1 - 25
  • [49] REMARKS ON THE QUANTUM DILOGARITHM
    BAZHANOV, VV
    RESHETIKHIN, NY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08): : 2217 - 2226
  • [50] Remarks On Quantum Ontology
    Décio Krause
    Synthese, 2000, 125 : 155 - 167