机构:National Research University Higher School of Economics,Financial University
Z. I. Bezhaeva
V. I. Oseledets
论文数: 0引用数: 0
h-index: 0
机构:National Research University Higher School of Economics,Financial University
V. I. Oseledets
机构:
[1] National Research University Higher School of Economics,Financial University
[2] Lomonosov Moscow State University,undefined
来源:
Functional Analysis and Its Applications
|
2015年
/
49卷
关键词:
*-algebra;
state on ;
*-algebra;
density matrix;
quantum Markov state;
von Neumann entropy;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M_{{d^n}}}$$\end{document}. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
机构:
Univ Lille 1, UFR Math, Lab Paul Painleve, UMR CNRS 8524, F-59655 Villeneuve Dascq, FranceUniv Lille 1, UFR Math, Lab Paul Painleve, UMR CNRS 8524, F-59655 Villeneuve Dascq, France
机构:
UNIV SAVOIE,PHYS THEOR LAB,CNRS URA 1436,ENSLAPP,F-74941 ANNECY LE VIEUX,FRANCEUNIV SAVOIE,PHYS THEOR LAB,CNRS URA 1436,ENSLAPP,F-74941 ANNECY LE VIEUX,FRANCE