Remarks on quantum Markov states

被引:0
|
作者
Z. I. Bezhaeva
V. I. Oseledets
机构
[1] National Research University Higher School of Economics,Financial University
[2] Lomonosov Moscow State University,undefined
来源
Functional Analysis and Its Applications | 2015年 / 49卷
关键词
*-algebra; state on ; *-algebra; density matrix; quantum Markov state; von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{{d^n}}}$$\end{document}. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [22] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    PHYSICAL REVIEW A, 2009, 79 (03):
  • [23] Some results on invariant states for quantum Markov semigroups
    Fagnola, F
    Rebolledo, R
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 227 : 197 - 208
  • [24] A note on invariant states of Gaussian quantum Markov semigroups
    Fagnola, Franco
    Poletti, Damiano
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024, 27 (04)
  • [25] BASINS OF ATTRACTION OF INVARIANT STATES OF A QUANTUM MARKOV SEMIGROUP
    Fagnola, F.
    Sasso, E.
    Umanita, V.
    INFINITE DIMENSIONAL ANALYSIS, QUANTUM PROBABILITY AND RELATED TOPICS, IDAQP 2024, 2024, : 47 - 58
  • [26] ON STATIONARY MARKOV DILATIONS OF QUANTUM DYNAMICAL SEMIGROUPS (SOME REMARKS INSPIRED BY THE WORKSHOP)
    FRIGERIO, A
    GORINI, V
    LECTURE NOTES IN MATHEMATICS, 1984, 1055 : 119 - 125
  • [27] Invariant States for a Quantum Markov Semigroup Constructed from Quantum Bernoulli Noises
    Chen, Jinshu
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2018, 25 (04):
  • [28] Do Quantum States Evolve? Apropos of Marchildon's Remarks
    Ulrich Mohrhoff
    Foundations of Physics, 2004, 34 : 75 - 97
  • [29] Do quantum states evolve? Apropos of Marchildon's remarks
    Mohrhoff, U
    FOUNDATIONS OF PHYSICS, 2004, 34 (01) : 75 - 97
  • [30] Quantum Markov processes: From attractor structure to explicit forms of asymptotic states Asymptotic dynamics of quantum Markov processes
    Novotny, J.
    Maryska, J.
    Jex, I.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (08):