Remarks on quantum Markov states

被引:0
|
作者
Z. I. Bezhaeva
V. I. Oseledets
机构
[1] National Research University Higher School of Economics,Financial University
[2] Lomonosov Moscow State University,undefined
来源
Functional Analysis and Its Applications | 2015年 / 49卷
关键词
*-algebra; state on ; *-algebra; density matrix; quantum Markov state; von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{{d^n}}}$$\end{document}. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [31] REMARKS ON CONSERVATIVE MARKOV PROCESSES
    FOGUEL, SR
    ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (04) : 381 - &
  • [32] REMARKS ON THE GLOBAL MARKOV PROPERTY
    GOLDSTEIN, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (03) : 223 - 234
  • [33] Remarks on convergence of Markov operators
    Li, X
    Mikusinski, P
    Taylor, MD
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (04): : 907 - 916
  • [34] REMARKS ON NEGATIVE ENERGY-STATES IN SUPERSYMMETRIC QUANTUM-MECHANICS
    ROY, P
    ROYCHOUDHURY, R
    VARSHNI, YP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (18): : 3673 - 3676
  • [35] Data processing inequality and open quantum systems: Beyond Markov states
    Turkmen, A.
    Vercin, A.
    Yilmaz, S.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [36] Generic Quantum Markov Semigroups with Degenerate Ground States: The Fock Case
    Hachicha, Skander
    Nasraoui, Ikbel
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2018, 25 (02):
  • [37] REMARKS ON A MARKOV CHAIN EXAMPLE OF KOLMOGOROV
    REUTER, GEH
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4): : 315 - &
  • [38] SOME REMARKS ON ADJOINT MARKOV PROCESSES
    SHUR, MG
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (01): : 109 - &
  • [39] Remarks on non-Markov processes
    van Kampen, NG
    BRAZILIAN JOURNAL OF PHYSICS, 1998, 28 (02) : 90 - 96
  • [40] REMARKS ON QUANTUM GROUPS
    FLATO, M
    LU, ZC
    LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (01) : 85 - 88