Remarks on quantum Markov states

被引:0
|
作者
Z. I. Bezhaeva
V. I. Oseledets
机构
[1] National Research University Higher School of Economics,Financial University
[2] Lomonosov Moscow State University,undefined
关键词
*-algebra; state on ; *-algebra; density matrix; quantum Markov state; von Neumann entropy;
D O I
暂无
中图分类号
学科分类号
摘要
The definition of a quantum Markov state was given by Accardi in 1975. For the classical case, this definition gives hidden Markov measures, which, generally speaking, are not Markov measures. We can use a nonnegative transfer matrix to define a Markov measure. We use a positive semidefinite transfer matrix and select a class of quantum Markov states (in the sense of Accardi) on the inductive limit of the C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{{d^n}}}$$\end{document}. An entangled quantum Markov state in the sense of Accardi and Fidaleo is a quantum Markov state in our sense. For the case where the transfer matrix has rank 1, we calculate the eigenvalues and the eigenvectors of the density matrices determining the quantum Markov state. The sequence of von Neumann entropies of the density matrices of this state is bounded.
引用
收藏
页码:205 / 209
页数:4
相关论文
共 50 条
  • [1] Remarks on quantum Markov states
    Bezhaeva, Z. I.
    Oseledets, V. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 205 - 209
  • [2] Quantum Markov States and Quantum Hidden Markov States
    Bezhaeva Z.I.
    Oseledets V.I.
    Journal of Mathematical Sciences, 2019, 240 (5) : 507 - 514
  • [3] THE ENTROPY OF QUANTUM MARKOV STATES
    BESSON, O
    LECTURE NOTES IN MATHEMATICS, 1985, 1136 : 81 - 89
  • [4] Potential theory for quantum Markov states and other quantum Markov chains
    Dhahri, Ameur
    Fagnola, Franco
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (02)
  • [5] Potential theory for quantum Markov states and other quantum Markov chains
    Ameur Dhahri
    Franco Fagnola
    Analysis and Mathematical Physics, 2023, 13
  • [6] Non-homogeneous quantum Markov states and quantum Markov fields
    Accardi, L
    Fidaleo, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (02) : 324 - 347
  • [7] Diagonalizability of Quantum Markov States on Trees
    Farrukh Mukhamedov
    Abdessatar Souissi
    Journal of Statistical Physics, 2021, 182
  • [8] Quantum Markov states on Cayley trees
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 473 (01) : 313 - 333
  • [9] Quantum Markov semigroups and their stationary states
    Fagnola, F
    Rebolledo, R
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS II, 2003, : 77 - 128
  • [10] Diagonalizability of Quantum Markov States on Trees
    Mukhamedov, Farrukh
    Souissi, Abdessatar
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)