Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome

被引:0
|
作者
Mehran Karimzadeh
Michael M. Hoffman
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Department of Computer Science
[3] Vector Institute,undefined
[4] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
引用
收藏
相关论文
共 50 条
  • [41] MotifGenie: a Python']Python application for searching transcription factor binding sequences using ChIP-Seq datasets
    Oguztuzun, Cerag
    Yasar, Pelin
    Yavuz, Kerim
    Muyan, Mesut
    Can, Tolga
    BIOINFORMATICS, 2021, 37 (22) : 4238 - 4239
  • [42] A novel UV laser ChIP-seq method for the study of aberrant transcription factor binding in cancer cells
    Stanko, C.
    Bohm, A. -L
    Schenk, T.
    ONCOLOGY RESEARCH AND TREATMENT, 2021, 44 : 295 - 295
  • [43] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Levitsky, Victor G.
    Kulakovskiy, Ivan V.
    Ershov, Nikita I.
    Oshchepkov, Dmitry Yu
    Makeev, Vsevolod J.
    Hodgman, T. C.
    Merkulova, Tatyana I.
    BMC GENOMICS, 2014, 15
  • [44] Optimized ChIP-seq method facilitates transcription factor profiling in human tumors
    Singh, Abhishek A.
    Schuurman, Karianne
    Nevedomskaya, Ekaterina
    Stelloo, Suzan
    Linder, Simon
    Droog, Marjolein
    Kim, Yongsoo
    Sanders, Joyce
    van der Poel, Henk
    Bergman, Andries M.
    Wessels, Lodewyk F. A.
    Zwart, Wilbert
    LIFE SCIENCE ALLIANCE, 2019, 2 (01)
  • [45] Genome-wide Statistical Analysis of Multiple Transcription Factor Binding Sites Obtained by ChIP-seq Technologies
    Orlov, Yuriy L.
    Huss, Mikael
    Joseph, Roy
    Xu, Han
    Vega, Vinsensius B.
    Lee, Yew K.
    Goh, Wee S.
    Thomsen, Jane S.
    Cheung, Edwin
    Clarke, Neil D.
    Ng, Huck H.
    COMPBIO09: BREAKING FRONTIERS OF COMPUTATIONAL BIOLOGY, 2009, : 11 - 18
  • [46] Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans
    Niu, Wei
    Lu, Zhi John
    Zhong, Mei
    Sarov, Mihail
    Murray, John I.
    Brdlik, Cathleen M.
    Janette, Judith
    Chen, Chao
    Alves, Pedro
    Preston, Elicia
    Slightham, Cindie
    Jiang, Lixia
    Hyman, Anthony A.
    Kim, Stuart K.
    Waterston, Robert H.
    Gerstein, Mark
    Snyder, Michael
    Reinke, Valerie
    GENOME RESEARCH, 2011, 21 (02) : 245 - 254
  • [47] Computer and Statistical Analysis of Transcription Factor Binding and Chromatin Modifications by ChIP-seq data in Embryonic Stem Cell
    Orlov, Yuriy
    Xu, Han
    Afonnikov, Dmitri
    Lim, Bing
    Heng, Jian-Chien
    Yuan, Ping
    Chen, Ming
    Yan, Junli
    Clarke, Neil
    Orlova, Nina
    Huss, Mikael
    Gunbin, Konstantin
    Podkolodnyy, Nikolay
    Ng, Huck-Hui
    JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2012, 9 (02):
  • [48] Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment
    Rebecca Worsley Hunt
    Anthony Mathelier
    Luis del Peso
    Wyeth W Wasserman
    BMC Genomics, 15
  • [49] Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment
    Hunt, Rebecca Worsley
    Mathelier, Anthony
    del Peso, Luis
    Wasserman, Wyeth W.
    BMC GENOMICS, 2014, 15
  • [50] A ChIP-Seq Benchmark Shows That Sequence Conservation Mainly Improves Detection of Strong Transcription Factor Binding Sites
    Handstad, Tony
    Rye, Morten Beck
    Drablos, Finn
    Saetrom, Pal
    PLOS ONE, 2011, 6 (04):