Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome

被引:0
|
作者
Mehran Karimzadeh
Michael M. Hoffman
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Department of Computer Science
[3] Vector Institute,undefined
[4] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
引用
收藏
相关论文
共 50 条
  • [31] Genome-Wide Profiling of Transcription Factor Binding and Epigenetic Marks in Adipocytes by ChIP-seq
    Nielsen, Ronni
    Mandrup, Susanne
    METHODS OF ADIPOSE TISSUE BIOLOGY, PT A, 2014, 537 : 261 - 279
  • [32] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Thomas-Chollier, Morgane
    Hufton, Andrew
    Heinig, Matthias
    O'Keeffe, Sean
    El Masri, Nassim
    Roider, Helge G.
    Manke, Thomas
    Vingron, Martin
    NATURE PROTOCOLS, 2011, 6 (12) : 1860 - 1869
  • [33] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev A.
    Johnson D.S.
    Sundquist A.
    Medina C.
    Anton E.
    Batzoglou S.
    Myers R.M.
    Sidow A.
    Nature Methods, 2008, 5 (9) : 829 - 834
  • [34] Inferring direct DNA binding from ChIP-seq
    Bailey, Timothy L.
    Machanick, Philip
    NUCLEIC ACIDS RESEARCH, 2012, 40 (17)
  • [35] TFEA.ChIP: a tool kit for transcription factor binding site enrichment analysis capitalizing on ChIP-seq datasets
    Puente-Santamaria, Laura
    Wasserman, Wyeth W.
    del Peso, Luis
    BIOINFORMATICS, 2019, 35 (24) : 5339 - 5340
  • [36] A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data
    Desmond S Lun
    Ashley Sherrid
    Brian Weiner
    David R Sherman
    James E Galagan
    Genome Biology, 10
  • [37] ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments
    Bailey, Swneke D.
    Virtanen, Carl
    Haibe-Kains, Benjamin
    Lupien, Mathieu
    BIOINFORMATICS, 2015, 31 (18) : 3057 - 3059
  • [38] A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data
    Lun, Desmond S.
    Sherrid, Ashley
    Weiner, Brian
    Sherman, David R.
    Galagan, James E.
    GENOME BIOLOGY, 2009, 10 (12):
  • [39] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Victor G Levitsky
    Ivan V Kulakovskiy
    Nikita I Ershov
    Dmitry Yu Oshchepkov
    Vsevolod J Makeev
    T C Hodgman
    Tatyana I Merkulova
    BMC Genomics, 15
  • [40] Studying the evolution of transcription factor binding events using multi-species ChIP-Seq data
    Zheng, Wei
    Zhao, Hongyu
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 1 - 15