Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome

被引:0
|
作者
Mehran Karimzadeh
Michael M. Hoffman
机构
[1] University of Toronto,Department of Medical Biophysics
[2] Princess Margaret Cancer Centre,Department of Computer Science
[3] Vector Institute,undefined
[4] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
引用
收藏
相关论文
共 50 条
  • [21] Discovering unknown human and mouse transcription factor binding sites and their characteristics from ChIP-seq data
    Yu, Chun-Ping
    Kuo, Chen-Hao
    Nelson, Chase W.
    Chen, Chi-An
    Soh, Zhi Thong
    Lin, Jinn-Jy
    Hsiao, Ru-Xiu
    Chang, Chih-Yao
    Li, Wen-Hsiung
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (20)
  • [22] A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
    Teemu D Laajala
    Sunil Raghav
    Soile Tuomela
    Riitta Lahesmaa
    Tero Aittokallio
    Laura L Elo
    BMC Genomics, 10
  • [23] De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis
    Boeva, Valentina
    Surdez, Didier
    Guillon, Noelle
    Tirode, Franck
    Fejes, Anthony P.
    Delattre, Olivier
    Barillot, Emmanuel
    NUCLEIC ACIDS RESEARCH, 2010, 38 (11) : e126 - e126
  • [24] A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments
    Laajala, Teemu D.
    Raghav, Sunil
    Tuomela, Soile
    Lahesmaa, Riitta
    Aittokallio, Tero
    Elo, Laura L.
    BMC GENOMICS, 2009, 10
  • [25] ChIP-Seq Data Completion and Transcription Factors Binding Analyses
    Huang, De-Shuang
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 7 - 7
  • [26] DREME: motif discovery in transcription factor ChIP-seq data
    Bailey, Timothy L.
    BIOINFORMATICS, 2011, 27 (12) : 1653 - 1659
  • [27] dPeak: High Resolution Identification of Transcription Factor Binding Sites from PET and SET ChIP-Seq Data
    Chung, Dongjun
    Park, Dan
    Myers, Kevin
    Grass, Jeffrey
    Kiley, Patricia
    Landick, Robert
    Keles, Suenduez
    PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (10)
  • [28] NUCLEOSOME DISTRIBUTION AROUND TRANSCRIPTION FACTOR BINDING SITES ENRICHED FROM GENOME-WIDE CHIP-SEQ
    Wang Wei
    Lu Zuhong
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 392 - 395
  • [29] Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs
    Morgane Thomas-Chollier
    Andrew Hufton
    Matthias Heinig
    Sean O'Keeffe
    Nassim El Masri
    Helge G Roider
    Thomas Manke
    Martin Vingron
    Nature Protocols, 2011, 6 : 1860 - 1869
  • [30] Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data
    Valouev, Anton
    Johnson, David S.
    Sundquist, Andreas
    Medina, Catherine
    Anton, Elizabeth
    Batzoglou, Serafim
    Myers, Richard M.
    Sidow, Arend
    NATURE METHODS, 2008, 5 (09) : 829 - 834