Self-adaptive inexact proximal point methods

被引:0
|
作者
William W. Hager
Hongchao Zhang
机构
[1] University of Florida,Department of Mathematics
[2] University of Minnesota,Institute for Mathematics and Its Applications (IMA)
关键词
Proximal point; Degenerate optimization; Multiple minima; Self-adaptive method;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu({\bf{x}})=\beta\|\nabla f({\bf{x}})\|^{\eta}$\end{document} where η∈[0,2) and β>0 is a constant, we obtain convergence to the set of minimizers that is linear for η=0 and β sufficiently small, superlinear for η∈(0,1), and at least quadratic for η∈[1,2). Two different acceptance criteria for an approximate solution to the proximal problem are analyzed. These criteria are expressed in terms of the gradient of the proximal function, the gradient of the original function, and the iteration difference. With either acceptance criterion, the convergence results are analogous to those of the exact iterates. Preliminary numerical results are presented using some ill-conditioned CUTE test problems.
引用
收藏
页码:161 / 181
页数:20
相关论文
共 50 条
  • [31] Novel self-adaptive particle swarm optimization methods
    Pornsing, Choosak
    Sodhi, Manhir S.
    Lamond, Bernard F.
    SOFT COMPUTING, 2016, 20 (09) : 3579 - 3593
  • [32] Research on Self-adaptive Algorithm in Self-adaptive Web System
    Cao, CaiFeng
    Luo, YaoZu
    Gong, Jing
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS RESEARCH AND MECHATRONICS ENGINEERING, 2015, 121 : 25 - 28
  • [33] Self-adaptive evolutionary methods in designing skeletal structures
    Borkowski, Adam
    Nikodem, Piotr
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 102 - +
  • [34] CONVERGENCE OF SELF-ADAPTIVE PROJECTION METHODS WITH LINEAR SEARCH FOR PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS
    Zhu, Li-Jun
    Postolache, Mihai
    She, Yaoyao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (08) : 1541 - 1554
  • [35] Inexact proximal Newton methods in Hilbert spaces
    Poetzl, Bastian
    Schiela, Anton
    Jaap, Patrick
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2024, 87 (01) : 1 - 37
  • [36] Inexact proximal Newton methods in Hilbert spaces
    Bastian Pötzl
    Anton Schiela
    Patrick Jaap
    Computational Optimization and Applications, 2024, 87 : 1 - 37
  • [37] Inexact Proximal Methods for Weakly Convex Functions
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Phat, Vo Thanh
    Tran, Dat Ba
    arXiv, 2023,
  • [38] Inexact proximal methods for weakly convex functions
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Phat, Vo Thanh
    Tran, Dat Ba
    JOURNAL OF GLOBAL OPTIMIZATION, 2025, 91 (03) : 611 - 646
  • [39] ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM ON HADAMARD MANIFOLDS
    Ahmadi, P.
    Khatibzadeh, H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 419 - 433
  • [40] Inexact proximal point method for general variational inequalities
    Bnouhachem, Abdellah
    Noor, Muhammad Aslam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) : 1195 - 1212