Inexact proximal methods for weakly convex functions

被引:0
|
作者
Khanh, Pham Duy [1 ]
Mordukhovich, Boris S. [2 ]
Phat, Vo Thanh [3 ]
Tran, Dat Ba [2 ]
机构
[1] Ho Chi Minh City Univ Educ, Dept Math, Grp Anal & Appl Math, Ho Chi Minh City, Vietnam
[2] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[3] Univ North Dakota, Dept Math & Stat, Grand Forks, ND USA
关键词
Inexact proximal methods; Weakly convex functions; Forward-backward envelopes; Kurdyka-& Lstrok; ojasiewicz property; Global convergence; Linear convergence rates; Proximal points; THRESHOLDING ALGORITHM; DESCENT METHODS; CONVERGENCE; PROJECTION; SHRINKAGE;
D O I
10.1007/s10898-024-01460-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes and develops inexact proximal methods for finding stationary points of the sum of a smooth function and a nonsmooth weakly convex one, where an error is present in the calculation of the proximal mapping of the nonsmooth term. A general framework for finding zeros of a continuous mapping is derived from our previous paper on this subject to establish convergence properties of the inexact proximal point method when the smooth term is vanished and of the inexact proximal gradient method when the smooth term satisfies a descent condition. The inexact proximal point method achieves global convergence with constructive convergence rates when the Moreau envelope of the objective function satisfies the Kurdyka-& Lstrok;ojasiewicz (KL) property. Meanwhile, when the smooth term is twice continuously differentiable with a Lipschitz continuous gradient and a differentiable approximation of the objective function satisfies the KL property, the inexact proximal gradient method achieves the global convergence of iterates with constructive convergence rates.
引用
收藏
页码:611 / 646
页数:36
相关论文
共 50 条
  • [1] Inexact Proximal Methods for Weakly Convex Functions
    Khanh, Pham Duy
    Mordukhovich, Boris S.
    Phat, Vo Thanh
    Tran, Dat Ba
    arXiv, 2023,
  • [2] Calculus rules for proximal ε-subdifferentials and inexact proximity operators for weakly convex functions
    Bednarczuk, Ewa
    Bruccola, Giovanni
    Scrivanti, Gabriele
    Tran, The Hung
    2023 EUROPEAN CONTROL CONFERENCE, ECC, 2023,
  • [3] Proximal Methods Avoid Active Strict Saddles of Weakly Convex Functions
    Davis, Damek
    Drusvyatskiy, Dmitriy
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (02) : 561 - 606
  • [4] Proximal Methods Avoid Active Strict Saddles of Weakly Convex Functions
    Damek Davis
    Dmitriy Drusvyatskiy
    Foundations of Computational Mathematics, 2022, 22 : 561 - 606
  • [5] Computing Proximal Points of Convex Functions with Inexact Subgradients
    W. Hare
    C. Planiden
    Set-Valued and Variational Analysis, 2018, 26 : 469 - 492
  • [6] Computing Proximal Points of Convex Functions with Inexact Subgradients
    Hare, W.
    Planiden, C.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (03) : 469 - 492
  • [7] Inexact proximal ε-subgradient methods for composite convex optimization problems
    Millan, R. Diaz
    Machado, M. Penton
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 75 (04) : 1029 - 1060
  • [8] Convex proximal bundle methods in depth: a unified analysis for inexact oracles
    Oliveira, W. de
    Sagastizabal, C.
    Lemarechal, C.
    MATHEMATICAL PROGRAMMING, 2014, 148 (1-2) : 241 - 277
  • [9] Convex proximal bundle methods in depth: a unified analysis for inexact oracles
    W. de Oliveira
    C. Sagastizábal
    C. Lemaréchal
    Mathematical Programming, 2014, 148 : 241 - 277
  • [10] Subgradient Methods for Sharp Weakly Convex Functions
    Davis, Damek
    Drusvyatskiy, Dmitriy
    MacPhee, Kellie J.
    Paquette, Courtney
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (03) : 962 - 982