Self-adaptive inexact proximal point methods

被引:0
|
作者
William W. Hager
Hongchao Zhang
机构
[1] University of Florida,Department of Mathematics
[2] University of Minnesota,Institute for Mathematics and Its Applications (IMA)
关键词
Proximal point; Degenerate optimization; Multiple minima; Self-adaptive method;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu({\bf{x}})=\beta\|\nabla f({\bf{x}})\|^{\eta}$\end{document} where η∈[0,2) and β>0 is a constant, we obtain convergence to the set of minimizers that is linear for η=0 and β sufficiently small, superlinear for η∈(0,1), and at least quadratic for η∈[1,2). Two different acceptance criteria for an approximate solution to the proximal problem are analyzed. These criteria are expressed in terms of the gradient of the proximal function, the gradient of the original function, and the iteration difference. With either acceptance criterion, the convergence results are analogous to those of the exact iterates. Preliminary numerical results are presented using some ill-conditioned CUTE test problems.
引用
收藏
页码:161 / 181
页数:20
相关论文
共 50 条
  • [41] An Accelerated Inexact Proximal Point Algorithm for Convex Minimization
    He, Bingsheng
    Yuan, Xiaoming
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) : 536 - 548
  • [42] An inexact proximal point method for quasiconvex multiobjective optimization
    Zhao, Xiaopeng
    Qi, Min
    Jolaoso, Lateef Olakunle
    Shehu, Yekini
    Yao, Jen-Chih
    Yao, Yonghong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [43] A class of inexact variable metric proximal point algorithms
    Parente, L. A.
    Lotito, P. A.
    Solodov, M. V.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) : 240 - 260
  • [44] Inexact Halpern-type proximal point algorithm
    Boikanyo, O. A.
    Morosanu, G.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 11 - 26
  • [45] An Accelerated Inexact Proximal Point Algorithm for Convex Minimization
    Bingsheng He
    Xiaoming Yuan
    Journal of Optimization Theory and Applications, 2012, 154 : 536 - 548
  • [46] Inexact Halpern-type proximal point algorithm
    O. A. Boikanyo
    G. Moroşanu
    Journal of Global Optimization, 2011, 51 : 11 - 26
  • [47] Inexact variants of the proximal point algorithm without monotonicity
    Iusem, AN
    Pennanen, T
    Svaiter, BF
    SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) : 1080 - 1097
  • [48] A unified framework for some inexact proximal point algorithms
    Solodov, MV
    Svaiter, BF
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (7-8) : 1013 - 1035
  • [49] Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis
    Yonghong Yao
    Zhangsong Yao
    Afrah AN Abdou
    Yeol Je Cho
    Fixed Point Theory and Applications, 2015
  • [50] Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis
    Yao, Yonghong
    Yao, Zhangsong
    Abdou, Afrah A. N.
    Cho, Yeol Je
    FIXED POINT THEORY AND APPLICATIONS, 2015, : 1 - 13