Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity

被引:0
|
作者
Raffaele Folino
Luis F. López Ríos
Ramón G. Plaza
机构
[1] Universidad Nacional Autónoma de México,Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
关键词
Nonlinear diffusion; Metastability; Energy estimates; 35K20; 35K57; 35K65; 35B36; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Allen–Cahn equation, ut=ε2(D(u)ux)x-ε22D′(u)ux2-F′(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t=\varepsilon ^2(D(u)u_x)_x-\frac{\varepsilon ^2}{2}D'(u)u_x^2-F'(u), \end{aligned}$$\end{document}with nonlinear diffusion, D=D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = D(u)$$\end{document}, and potential, F=F(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = F(u)$$\end{document}, of the form D(u)=|1-u2|m,orD(u)=|1-u|m,m>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(u) = |1-u^2|^{m}, \quad \text {or} \quad D(u) = |1-u|^{m}, \quad m >1, \end{aligned}$$\end{document}and F(u)=12n|1-u2|n,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(u)=\frac{1}{2n}|1-u^2|^{n}, \qquad n\ge 2, \end{aligned}$$\end{document}respectively, is studied. These choices correspond to a reaction function that can be derived from a double well potential, and to a generalized degenerate diffusivity coefficient depending on the density u that vanishes at one or at the two wells, u=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = \pm 1$$\end{document}. It is shown that interface layer solutions that are equal to ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document} except at a finite number of thin transitions of width ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} persist for an either exponentially or algebraically long time, depending upon the interplay between the exponents n and m. For that purpose, energy bounds for a renormalized effective energy potential of Ginzburg–Landau type are derived.
引用
收藏
相关论文
共 50 条
  • [41] Long-Time Behavior of Solution for a Reactor Model
    Guo, Yantao
    Shen, Jianwei
    Zheng, Qianqian
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [42] Long-time behavior of a stochastic SIR model
    Lin, Yuguo
    Jiang, Daqing
    Xia, Peiyan
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 1 - 9
  • [43] Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis
    Garcke, Harald
    Yayla, Sema
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [44] Long-time behavior of a regime-switching Susceptible-Infective epidemic model with degenerate diffusion
    Yuguo Lin
    Manli Jin
    Li Guo
    Advances in Difference Equations, 2017
  • [45] Long-time behavior of a regime-switching Susceptible-Infective epidemic model with degenerate diffusion
    Lin, Yuguo
    Jin, Manli
    Guo, Li
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [46] Long-time behavior of some models of Cahn-Hilliard equations in deformable continua
    Miranville, A
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2001, 2 (03) : 273 - 304
  • [47] Long-time behavior of solutions for full compressible quantum model in R3
    Xie, Binqiang
    Xi, Xiaoyu
    Guo, Boling
    APPLIED MATHEMATICS LETTERS, 2018, 80 : 54 - 58
  • [48] Long-time behavior of solutions for the compressible quantum magnetohydrodynamic model in R3
    Xi, Xiaoyu
    Pu, Xueke
    Guo, Boling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [49] Long-time behavior of partially damped systems modeling degenerate plates with piers
    Gazzola, Filippo
    Soufyane, Abdelaziz
    NONLINEARITY, 2021, 34 (11) : 7705 - 7727
  • [50] Global Regularity and Long-time Behavior of the Solutions to the 2D Boussinesq Equations without Diffusivity in a Bounded Domain
    Ju, Ning
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (01) : 105 - 121