Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity

被引:0
|
作者
Raffaele Folino
Luis F. López Ríos
Ramón G. Plaza
机构
[1] Universidad Nacional Autónoma de México,Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
关键词
Nonlinear diffusion; Metastability; Energy estimates; 35K20; 35K57; 35K65; 35B36; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Allen–Cahn equation, ut=ε2(D(u)ux)x-ε22D′(u)ux2-F′(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t=\varepsilon ^2(D(u)u_x)_x-\frac{\varepsilon ^2}{2}D'(u)u_x^2-F'(u), \end{aligned}$$\end{document}with nonlinear diffusion, D=D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = D(u)$$\end{document}, and potential, F=F(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = F(u)$$\end{document}, of the form D(u)=|1-u2|m,orD(u)=|1-u|m,m>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(u) = |1-u^2|^{m}, \quad \text {or} \quad D(u) = |1-u|^{m}, \quad m >1, \end{aligned}$$\end{document}and F(u)=12n|1-u2|n,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(u)=\frac{1}{2n}|1-u^2|^{n}, \qquad n\ge 2, \end{aligned}$$\end{document}respectively, is studied. These choices correspond to a reaction function that can be derived from a double well potential, and to a generalized degenerate diffusivity coefficient depending on the density u that vanishes at one or at the two wells, u=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = \pm 1$$\end{document}. It is shown that interface layer solutions that are equal to ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document} except at a finite number of thin transitions of width ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} persist for an either exponentially or algebraically long time, depending upon the interplay between the exponents n and m. For that purpose, energy bounds for a renormalized effective energy potential of Ginzburg–Landau type are derived.
引用
收藏
相关论文
共 50 条
  • [11] Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion
    Miaomiao Gao
    Daqing Jiang
    Xiangdan Wen
    Journal of Systems Science and Complexity, 2022, 35 : 931 - 952
  • [12] LONG-TIME BEHAVIOR FOR A CLASS OF DEGENERATE PARABOLIC EQUATIONS
    Li, Hongtao
    Ma, Shan
    Zhong, Chengkui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (07) : 2873 - 2892
  • [13] Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion
    Gao Miaomiao
    Jiang Daqing
    Wen Xiangdan
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (03) : 931 - 952
  • [14] Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion
    GAO Miaomiao
    JIANG Daqing
    WEN Xiangdan
    JournalofSystemsScience&Complexity, 2022, 35 (03) : 931 - 952
  • [15] LONG-TIME BEHAVIOR OF SOLUTIONS OF AN ELECTROPHORETIC MODEL WITH A SINGLE REACTION
    CHOI, YS
    LUI, R
    IMA JOURNAL OF APPLIED MATHEMATICS, 1993, 50 (03) : 239 - 252
  • [16] EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY
    Zhang, Xiaoli
    Liu, Changchun
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [17] Long-time behavior for impulsive generalized semiflows
    Bonotto, Everaldo de Mello
    Kalita, Piotr
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2024, 51
  • [18] ON THE LONG-TIME BEHAVIOR OF A GENERALIZED KDV EQUATION
    SIDI, A
    SULEM, C
    SULEM, PL
    ACTA APPLICANDAE MATHEMATICAE, 1986, 7 (01) : 35 - 47
  • [19] ON THE LONG-TIME LIMIT OF POSITIVE SOLUTIONS TO THE DEGENERATE LOGISTIC EQUATION
    Du, Yihong
    Yamada, Yoshio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 123 - 132
  • [20] LONG-TIME BEHAVIOR AND STABILITY OF ENTROPY SOLUTIONS FOR LINEARLY DEGENERATE HYPERBOLIC SYSTEMS OF RICH TYPE
    Peng, Yue-Jun
    Yang, Yong-Fu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3683 - 3706