Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity

被引:0
|
作者
Raffaele Folino
Luis F. López Ríos
Ramón G. Plaza
机构
[1] Universidad Nacional Autónoma de México,Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
关键词
Nonlinear diffusion; Metastability; Energy estimates; 35K20; 35K57; 35K65; 35B36; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Allen–Cahn equation, ut=ε2(D(u)ux)x-ε22D′(u)ux2-F′(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t=\varepsilon ^2(D(u)u_x)_x-\frac{\varepsilon ^2}{2}D'(u)u_x^2-F'(u), \end{aligned}$$\end{document}with nonlinear diffusion, D=D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = D(u)$$\end{document}, and potential, F=F(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = F(u)$$\end{document}, of the form D(u)=|1-u2|m,orD(u)=|1-u|m,m>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(u) = |1-u^2|^{m}, \quad \text {or} \quad D(u) = |1-u|^{m}, \quad m >1, \end{aligned}$$\end{document}and F(u)=12n|1-u2|n,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(u)=\frac{1}{2n}|1-u^2|^{n}, \qquad n\ge 2, \end{aligned}$$\end{document}respectively, is studied. These choices correspond to a reaction function that can be derived from a double well potential, and to a generalized degenerate diffusivity coefficient depending on the density u that vanishes at one or at the two wells, u=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = \pm 1$$\end{document}. It is shown that interface layer solutions that are equal to ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document} except at a finite number of thin transitions of width ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} persist for an either exponentially or algebraically long time, depending upon the interplay between the exponents n and m. For that purpose, energy bounds for a renormalized effective energy potential of Ginzburg–Landau type are derived.
引用
收藏
相关论文
共 50 条
  • [21] LONG-TIME BEHAVIOR OF A NONLOCAL CAHN-HILLIARD EQUATION WITH REACTION
    Iuorio, Annalisa
    Melchionna, Stefano
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (08) : 3765 - 3788
  • [22] Long-time behavior of the Cahn–Hilliard equation with dynamic boundary condition
    Alain Miranville
    Hao Wu
    Journal of Elliptic and Parabolic Equations, 2020, 6 : 283 - 309
  • [23] Long-time behavior for the Hele-Shaw-Cahn-Hilliard system
    Wang, Xiaoming
    Wu, Hao
    ASYMPTOTIC ANALYSIS, 2012, 78 (04) : 217 - 245
  • [24] Long-time behavior of a regime-switching SIRS epidemic model with degenerate diffusion
    Lin, Yuguo
    Wang, Libo
    Dong, Xiaowan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 529
  • [25] Solutions of an Allen-Cahn model equation
    Rabinowitz, PH
    Stredulinsky, E
    NONLINEAR EQUATIONS: METHODS, MODELS AND APPLICATIONS, 2003, 54 : 245 - 256
  • [26] Long-time dynamics for a Cahn–Hilliard tumor growth model with chemotaxis
    Harald Garcke
    Sema Yayla
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [27] Long-time behaviour of a porous medium model with degenerate hysteresis
    Gavioli, Chiara
    Krejci, Pavel
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2277): : 20230299
  • [28] Long-time behavior of the Cahn-Hilliard equation with dynamic boundary condition
    Miranville, Alain
    Wu, Hao
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (01) : 283 - 309
  • [29] LARGE TIME BEHAVIOR OF THE SOLUTIONS WITH SPREADING FRONTS IN THE ALLEN-CAHN EQUATIONS ON Rn
    Nara, Mitsunori
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, : 3605 - 3628
  • [30] Long-time behavior of the solutions of Murray-Thomas model for interacting chemicals
    Rionero, Salvatore
    Vitiello, Maria
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (09) : 1597 - 1614