Long-time behavior of solutions to the generalized Allen–Cahn model with degenerate diffusivity

被引:0
|
作者
Raffaele Folino
Luis F. López Ríos
Ramón G. Plaza
机构
[1] Universidad Nacional Autónoma de México,Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
关键词
Nonlinear diffusion; Metastability; Energy estimates; 35K20; 35K57; 35K65; 35B36; 82B26;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Allen–Cahn equation, ut=ε2(D(u)ux)x-ε22D′(u)ux2-F′(u),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_t=\varepsilon ^2(D(u)u_x)_x-\frac{\varepsilon ^2}{2}D'(u)u_x^2-F'(u), \end{aligned}$$\end{document}with nonlinear diffusion, D=D(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = D(u)$$\end{document}, and potential, F=F(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F = F(u)$$\end{document}, of the form D(u)=|1-u2|m,orD(u)=|1-u|m,m>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} D(u) = |1-u^2|^{m}, \quad \text {or} \quad D(u) = |1-u|^{m}, \quad m >1, \end{aligned}$$\end{document}and F(u)=12n|1-u2|n,n≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} F(u)=\frac{1}{2n}|1-u^2|^{n}, \qquad n\ge 2, \end{aligned}$$\end{document}respectively, is studied. These choices correspond to a reaction function that can be derived from a double well potential, and to a generalized degenerate diffusivity coefficient depending on the density u that vanishes at one or at the two wells, u=±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u = \pm 1$$\end{document}. It is shown that interface layer solutions that are equal to ±1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 1$$\end{document} except at a finite number of thin transitions of width ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} persist for an either exponentially or algebraically long time, depending upon the interplay between the exponents n and m. For that purpose, energy bounds for a renormalized effective energy potential of Ginzburg–Landau type are derived.
引用
收藏
相关论文
共 50 条
  • [1] Long-time behavior of solutions to the generalized Allen-Cahn model with degenerate diffusivity
    Folino, Raffaele
    Fernando Lopez-Rios, Luis
    Plaza, Ramon G.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (04):
  • [2] On the long-time behavior of the continuous and discrete solutions of a nonlocal Cahn-Hilliard type inpainting model
    Jiang, Dandan
    Azaiez, Mejdi
    Miranville, Alain
    Xu, Chuanju
    Yao, Hui
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 : 461 - 479
  • [3] LONG-TIME BEHAVIOR OF SOLUTIONS OF A BBM EQUATION WITH GENERALIZED DAMPING
    Chehab, Jean-Paul
    Garnier, Pierre
    Mammeri, Youcef
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 1897 - 1915
  • [4] ON THE LONG-TIME BEHAVIOR OF SOLUTIONS TO THE BAROTROPIC ATMOSPHERE MODEL
    SKIBA, YN
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1994, 78 (1-4): : 143 - 167
  • [5] Long-Time Behavior of a Stochastic Turbidostat Model Under Degenerate Diffusion
    Zhongwei Cao
    Xiaojie Mu
    Daqing Jiang
    Journal of Systems Science and Complexity, 2023, 36 : 1641 - 1657
  • [6] Long-Time Behavior of a Stochastic Turbidostat Model Under Degenerate Diffusion
    CAO Zhongwei
    MU Xiaojie
    JIANG Daqing
    JournalofSystemsScience&Complexity, 2023, 36 (04) : 1641 - 1657
  • [7] Global existence and long-time behavior of solutions to a class of degenerate parabolic equations
    Anh, Cung The
    Hung, Phan Quoc
    ANNALES POLONICI MATHEMATICI, 2008, 93 (03) : 217 - 230
  • [8] Long-Time Behavior of a Stochastic Turbidostat Model Under Degenerate Diffusion
    Cao, Zhongwei
    Mu, Xiaojie
    Jiang, Daqing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (04) : 1641 - 1657
  • [9] LONG-TIME BEHAVIOR OF SOLUTIONS OF THE GENERALIZED KORTEWEG DE VRIES EQUATION
    Said-Houari, Belkacem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (01): : 245 - 252
  • [10] Allen-Cahn equation as a long-time modulation to a reaction-diffusion system
    Bellsky, Thomas
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 359 - 367