On the uniform distribution modulo 1 of multidimensional LS-sequences

被引:0
|
作者
Christoph Aistleitner
Markus Hofer
Volker Ziegler
机构
[1] University of New South Wales,Department of Applied Mathematics, School of Mathematics and Statistics
[2] Graz University of Technology,Institute of Mathematics A
关键词
Discrepancy; LS-sequence; Uniform distribution; Beta-expansion; 11J71; 11K38; 11D45; 11A67;
D O I
暂无
中图分类号
学科分类号
摘要
Ingrid Carbone introduced the notion of so-called LS-sequences of points, which are obtained by a generalization of Kakutani’s interval splitting procedure. Under an appropriate choice of the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, such sequences have low discrepancy, which means that they are natural candidates for Quasi-Monte Carlo integration. It is tempting to assume that LS-sequences can be combined coordinatewise to obtain a multidimensional low-discrepancy sequence. However, in the present paper, we prove that this is not always the case: if the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1,S_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2,S_2$$\end{document} of two one-dimensional low-discrepancy LS-sequences satisfy certain number-theoretic conditions, then their two-dimensional combination is not even dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^2$$\end{document}.
引用
收藏
页码:1329 / 1344
页数:15
相关论文
共 50 条
  • [41] Distribution of some quadratic linear recurrence sequences modulo 1
    Dubickas, Arturas
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (01) : 79 - 86
  • [43] Distribution of Wythoff Sequences Modulo One
    Kawsumarng, Sutasinee
    Khemaratchatakumthorn, Tammatada
    Noppakaew, Passawan
    Pongsriiam, Prapanpong
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2020, 15 (04): : 1045 - 1053
  • [45] On Weyl products and uniform distribution modulo one
    Christoph Aistleitner
    Gerhard Larcher
    Friedrich Pillichshammer
    Sumaia Saad Eddin
    Robert F. Tichy
    Monatshefte für Mathematik, 2018, 185 : 365 - 395
  • [46] NOTES ON UNIFORM-DISTRIBUTION MODULO ONE
    MYERSON, G
    POLLINGTON, AD
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1990, 49 : 264 - 272
  • [47] On Weyl products and uniform distribution modulo one
    Aistleitner, Christoph
    Larcher, Gerhard
    Pillichshammer, Friedrich
    Eddin, Sumaia Saad
    Tichy, Robert F.
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (03): : 365 - 395
  • [48] Uniform Distribution of Sequences
    Blazekova, Ol'ga
    XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, 2011, : 93 - 98
  • [49] Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions
    Antanas Laurinčikas
    Renata Macaitienė
    Darius Šiaučiūnas
    Lithuanian Mathematical Journal, 2016, 56 : 529 - 539
  • [50] SOME RESULTS IN PROBABILISTIC THEORY OF ASYMPTOTIC UNIFORM-DISTRIBUTION MODULO 1
    LOYNES, RM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (01): : 33 - 41