On the uniform distribution modulo 1 of multidimensional LS-sequences

被引:0
|
作者
Christoph Aistleitner
Markus Hofer
Volker Ziegler
机构
[1] University of New South Wales,Department of Applied Mathematics, School of Mathematics and Statistics
[2] Graz University of Technology,Institute of Mathematics A
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2014年 / 193卷
关键词
Discrepancy; LS-sequence; Uniform distribution; Beta-expansion; 11J71; 11K38; 11D45; 11A67;
D O I
暂无
中图分类号
学科分类号
摘要
Ingrid Carbone introduced the notion of so-called LS-sequences of points, which are obtained by a generalization of Kakutani’s interval splitting procedure. Under an appropriate choice of the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, such sequences have low discrepancy, which means that they are natural candidates for Quasi-Monte Carlo integration. It is tempting to assume that LS-sequences can be combined coordinatewise to obtain a multidimensional low-discrepancy sequence. However, in the present paper, we prove that this is not always the case: if the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1,S_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2,S_2$$\end{document} of two one-dimensional low-discrepancy LS-sequences satisfy certain number-theoretic conditions, then their two-dimensional combination is not even dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^2$$\end{document}.
引用
收藏
页码:1329 / 1344
页数:15
相关论文
共 50 条
  • [31] Randomness and uniform distribution modulo one
    Becher, Veronica
    Grigorieff, Serge
    INFORMATION AND COMPUTATION, 2022, 285
  • [32] Uniform distribution modulo one on subsequences
    Hill, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (07) : 1981 - 1986
  • [33] On the uniform distribution of inverses modulo n
    Beck J.
    Khan M.R.
    Periodica Mathematica Hungarica, 2002, 44 (2) : 147 - 155
  • [34] UNIFORM DISTRIBUTION OF POLYNOMIALS MODULO M
    CAVIOR, SR
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (02): : 171 - &
  • [35] ON UNIFORM DISTRIBUTION MODULO-DELTA
    LEVEQUE, WJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (02) : 154 - 155
  • [36] UNIFORM DISTRIBUTION MODULO M OF MONOMIALS
    ZANE, B
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (02): : 162 - &
  • [37] EXTREMAL PROPERTIES OF (EPI)STURMIAN SEQUENCES AND DISTRIBUTION MODULO 1
    Allouche, Jean-Paul
    Glen, Amy
    ENSEIGNEMENT MATHEMATIQUE, 2010, 56 (3-4): : 365 - 401
  • [38] DISTRIBUTION MODULO 1 OF SOME OSCILLATING SEQUENCES .2.
    BEREND, D
    BOSHERNITZAN, MD
    KOLESNIK, G
    ISRAEL JOURNAL OF MATHEMATICS, 1995, 92 (1-3) : 125 - 147
  • [39] Distribution modulo 1 of some oscillating sequences. III
    Berend, D
    Boshernitzan, MD
    Kolesnik, G
    ACTA MATHEMATICA HUNGARICA, 2002, 95 (1-2) : 1 - 20
  • [40] Distribution Modulo 1 of Some Oscillating Sequences. III
    Daniel Berend
    Michael D. Boshernitzan
    Grigori Kolesnik
    Acta Mathematica Hungarica, 2002, 95 : 1 - 20