Distribution modulo 1 of some oscillating sequences. III

被引:3
|
作者
Berend, D [1 ]
Boshernitzan, MD
Kolesnik, G
机构
[1] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
[3] Rice Univ, Dept Math, Houston, TX 77251 USA
[4] Calif State Univ Los Angeles, Dept Math & Comp Sci, Los Angeles, CA 90032 USA
关键词
density modulo 1; distribution modulo 1; uniform distribution; exponential sums; Hardy field;
D O I
10.1023/A:1015678014546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For some oscillating functions, such as h(x) = x(pi) log 3 x cos x, we we consider the distribution properties modulo I (density, uniform distribution) of the sequence h(n), n greater than or equal to 1. We obtain positive and negative results covering the case when the factor x(pi) log(3) X is replaced by an arbitrary function f of at most polynomial growth belonging to any Hardy field. (The latter condition may be viewed as a regularity growth condition on f.) Similar results are obtained for the subsequence h(p), taken over the primes p = 2, 3, 5,....
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条