Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions

被引:0
|
作者
Antanas Laurinčikas
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Šiauliai University,Faculty of Technology, Physical and Biomedical Sciences
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
Dirichlet ; -functions; discrete universality; joint universality; uniform distribution modulo 1; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条