In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
机构:
Tongji Univ, Sch Math Sci, Shanghai, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai, Peoples R China
Dong, Zikang
Wang, Weijia
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai, Peoples R China
Wang, Weijia
Zhang, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Sch Math, Changsha, Peoples R China
Hunan Univ, Sch Math, Changsha 410082, Peoples R ChinaTongji Univ, Sch Math Sci, Shanghai, Peoples R China
机构:
Adam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-61614 Poznan, Poland
Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, JapanAdam Mickiewicz Univ, Fac Math & Comp Sci, Umultowska 87, PL-61614 Poznan, Poland
机构:
Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, LithuaniaVilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
Laurincikas, Antanas
Siauciunas, Darius
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Univ, Siauliai Acad, Inst Reg Dev, P Visinskio Str 25, LT-76351 Shiauliai, LithuaniaVilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania