Uniform Distribution Modulo 1 and the Joint Universality of Dirichlet L-functions

被引:0
|
作者
Antanas Laurinčikas
Renata Macaitienė
Darius Šiaučiūnas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
[2] Šiauliai University,Faculty of Technology, Physical and Biomedical Sciences
来源
Lithuanian Mathematical Journal | 2016年 / 56卷
关键词
Dirichlet ; -functions; discrete universality; joint universality; uniform distribution modulo 1; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we prove a joint universality theorem on the approximation of a collection of analytic functions by a collection of shifts of Dirichlet L-functions L(s + iτ,χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \chi $$\end{document}j), where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tau $$\end{document} takes values from the set {kα: k = 0, 1, 2, . . . } with 0 <α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha $$\end{document}< 1. The proof of this theorem uses the theory of uniform distribution modulo 1.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [11] Distribution of Dirichlet L-functions
    Dong, Zikang
    Wang, Weijia
    Zhang, Hao
    MATHEMATIKA, 2023, 69 (03) : 719 - 750
  • [12] Joint universality for dependent L-functions
    Łukasz Pańkowski
    The Ramanujan Journal, 2018, 45 : 181 - 195
  • [13] Joint universality for dependent L-functions
    Pankowski, Lukasz
    RAMANUJAN JOURNAL, 2018, 45 (01): : 181 - 195
  • [14] Distinguishing L-functions by joint universality
    Steuding, Joern
    LITHUANIAN MATHEMATICAL JOURNAL, 2021, 61 (03) : 413 - 423
  • [15] Distinguishing L-functions by joint universality
    Jörn Steuding
    Lithuanian Mathematical Journal, 2021, 61 : 413 - 423
  • [16] Joint Approximation by Dirichlet L-Functions
    Laurincikas, Antanas
    Siauciunas, Darius
    MATHEMATICA SLOVACA, 2022, 72 (01) : 51 - 66
  • [17] The joint universality of twisted automorphic L-functions
    Laurincikas, A
    Matsumoto, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (03) : 923 - 939
  • [18] ZERO DISTRIBUTION OF DIRICHLET L-FUNCTIONS
    Hu, Pei-Chu
    Wu, Ai-Di
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (02) : 775 - 788
  • [19] Correction to: Distinguishing L-functions by joint universality
    Jörn Steuding
    Lithuanian Mathematical Journal, 2021, 61 : 565 - 565
  • [20] The twisted moments and distribution of values of Dirichlet L-functions at 1
    Lee, Seok Hyeong
    Lee, Seungjai
    JOURNAL OF NUMBER THEORY, 2019, 197 : 168 - 184