On the uniform distribution modulo 1 of multidimensional LS-sequences

被引:0
|
作者
Christoph Aistleitner
Markus Hofer
Volker Ziegler
机构
[1] University of New South Wales,Department of Applied Mathematics, School of Mathematics and Statistics
[2] Graz University of Technology,Institute of Mathematics A
关键词
Discrepancy; LS-sequence; Uniform distribution; Beta-expansion; 11J71; 11K38; 11D45; 11A67;
D O I
暂无
中图分类号
学科分类号
摘要
Ingrid Carbone introduced the notion of so-called LS-sequences of points, which are obtained by a generalization of Kakutani’s interval splitting procedure. Under an appropriate choice of the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S$$\end{document}, such sequences have low discrepancy, which means that they are natural candidates for Quasi-Monte Carlo integration. It is tempting to assume that LS-sequences can be combined coordinatewise to obtain a multidimensional low-discrepancy sequence. However, in the present paper, we prove that this is not always the case: if the parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_1,S_1$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2,S_2$$\end{document} of two one-dimensional low-discrepancy LS-sequences satisfy certain number-theoretic conditions, then their two-dimensional combination is not even dense in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,1]^2$$\end{document}.
引用
收藏
页码:1329 / 1344
页数:15
相关论文
共 50 条