Discrepancy of LS-sequences of partitions and points

被引:0
|
作者
Ingrid Carbone
机构
[1] Università della Calabria,
来源
关键词
Uniform distribution; Discrepancy; 11K06; 11K38; 11K45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a countable family of uniformly distributed sequences of partitions, called LS-sequences of partitions, and we give a precise estimate of their discrepancy. Among these sequences, we identify a countable class having low discrepancy (which means of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\frac{1}{N}}}$$\end{document}). We describe an explicit algorithm that associates to each of these sequences a uniformly distributed sequence of points (we call LS-sequences of points). The main result of this paper says that the discrepancy of the sequences of points associated by our algorithm to the LS-sequences of partitions is of order αN log N, if αN is the discrepancy of the corresponding sequence of partitions. We obtain therefore, in particular, a countable family of low-discrepancy sequences of points.
引用
收藏
页码:819 / 844
页数:25
相关论文
共 50 条
  • [2] Extension of van der Corput algorithm to LS-sequences
    Carbone, Ingrid
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 255 : 207 - 213
  • [3] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Christoph Aistleitner
    Markus Hofer
    Volker Ziegler
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1329 - 1344
  • [4] On the uniform distribution modulo 1 of multidimensional LS-sequences
    Aistleitner, Christoph
    Hofer, Markus
    Ziegler, Volker
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (05) : 1329 - 1344
  • [5] Comparison Between LS-Sequences and β-Adic van der Corput Sequences
    Carbone, Ingrid
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 261 - 270
  • [6] Fixed points and matching points in partitions
    Blecher, Aubrey
    Knopfmacher, Arnold
    RAMANUJAN JOURNAL, 2022, 58 (01): : 23 - 41
  • [7] Fixed points and matching points in partitions
    Aubrey Blecher
    Arnold Knopfmacher
    The Ramanujan Journal, 2022, 58 : 23 - 41
  • [8] ON PARTITIONS OF N POINTS
    WATSON, D
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1969, 16 : 263 - &
  • [9] ON PARTITIONS AND PRESORTEDNESS OF SEQUENCES
    CARLSSON, S
    CHEN, JS
    ACTA INFORMATICA, 1992, 29 (03) : 267 - 280
  • [10] Goldbach Partitions and Sequences
    Kak, Subhash
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2014, 19 (11): : 1028 - 1037