On local antimagic chromatic number of lexicographic product graphs

被引:0
|
作者
G.-C. Lau
W. C. Shiu
机构
[1] Universiti Teknologi MARA (Johor Branch,College of Computing, Informatics and Media
[2] Segamat Campus),Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
local antimagic chromatic number; lexicographic product; regular; disconnected; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a simple connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} of order p and size q. For a bijection f:E→{1,2,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : E \to \{1,2,\ldots,q\}$$\end{document}, let f+(u)=∑e∈E(u)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) = \sum_{e\in E(u)} f(e)$$\end{document} where E(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)$$\end{document} is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u)≠f+(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) \ne f^+(v)$$\end{document}. The minimum number of distinct values of f+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+$$\end{document} taken over all local antimagic labeling of G is denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)$$\end{document}. Let G[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[H]$$\end{document} be the lexicographic product of graphs G and H. In this paper, we obtain sharp upper bound for χla(G[On])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G[O_n])$$\end{document} where On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} is a null graph of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. Sufficient conditions for even regular bipartite and tripartite graphs G to have χla(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=3$$\end{document} are also obtained. Consequently, we successfully determined the local antimagic chromatic number of infinitely many (connected and disconnected) regular graphs that partially support the existence of an r-regular graph G of order p such that (i) χla(G)=χ(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)=k$$\end{document}, and (ii) χla(G)=χ(G)+1=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)+1=k$$\end{document} for each possible r,p,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,p,k$$\end{document}.
引用
收藏
页码:158 / 170
页数:12
相关论文
共 50 条
  • [31] The Local Antimagic Total Chromatic Number of Some Wheel-Related Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    AXIOMS, 2022, 11 (03)
  • [32] Approaches that output infinitely many graphs with small local antimagic chromatic number
    Lau, Gee-Choon
    Li, Jianxi
    Shiu, Wai-Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [33] Affirmative Solutions on Local Antimagic Chromatic Number
    Lau, Gee-Choon
    Ng, Ho-Kuen
    Shiu, Wai-Chee
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1337 - 1354
  • [34] Local antimagic chromatic number of trees - I
    Premalatha, K.
    Arumugam, S.
    Lee, Yi-Chun
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1591 - 1602
  • [35] Affirmative Solutions on Local Antimagic Chromatic Number
    Gee-Choon Lau
    Ho-Kuen Ng
    Wai-Chee Shiu
    Graphs and Combinatorics, 2020, 36 : 1337 - 1354
  • [36] The chromatic number of local antimagic total edge coloring of some related cycle graphs
    Kurniawati, E. Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Nisviasari, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [37] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [38] CHROMATIC NUMBER AND OTHER FUNCTIONS OF LEXICOGRAPHIC PRODUCT
    GELLER, D
    STAHL, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (01) : 87 - 95
  • [39] The geodetic number of the lexicographic product of graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    DISCRETE MATHEMATICS, 2011, 311 (16) : 1693 - 1698
  • [40] Local distance antimagic cromatic number of join product of graphs with cycles or paths
    Shiu, Wai Chee
    Lau, Gee-Choon
    Nalliah, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 788 - 802