On local antimagic chromatic number of lexicographic product graphs

被引:0
|
作者
G.-C. Lau
W. C. Shiu
机构
[1] Universiti Teknologi MARA (Johor Branch,College of Computing, Informatics and Media
[2] Segamat Campus),Department of Mathematics
[3] The Chinese University of Hong Kong,undefined
来源
Acta Mathematica Hungarica | 2023年 / 169卷
关键词
local antimagic chromatic number; lexicographic product; regular; disconnected; 05C78; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a simple connected graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document} of order p and size q. For a bijection f:E→{1,2,…,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : E \to \{1,2,\ldots,q\}$$\end{document}, let f+(u)=∑e∈E(u)f(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) = \sum_{e\in E(u)} f(e)$$\end{document} where E(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E(u)$$\end{document} is the set of edges incident to u. We say f is a local antimagic labeling of G if for any two adjacent vertices u and v, we have f+(u)≠f+(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+(u) \ne f^+(v)$$\end{document}. The minimum number of distinct values of f+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^+$$\end{document} taken over all local antimagic labeling of G is denoted by χla(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)$$\end{document}. Let G[H]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[H]$$\end{document} be the lexicographic product of graphs G and H. In this paper, we obtain sharp upper bound for χla(G[On])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G[O_n])$$\end{document} where On\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O_n$$\end{document} is a null graph of order n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document}. Sufficient conditions for even regular bipartite and tripartite graphs G to have χla(G)=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=3$$\end{document} are also obtained. Consequently, we successfully determined the local antimagic chromatic number of infinitely many (connected and disconnected) regular graphs that partially support the existence of an r-regular graph G of order p such that (i) χla(G)=χ(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)=k$$\end{document}, and (ii) χla(G)=χ(G)+1=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi_{la}(G)=\chi(G)+1=k$$\end{document} for each possible r,p,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r,p,k$$\end{document}.
引用
收藏
页码:158 / 170
页数:12
相关论文
共 50 条
  • [21] On the local super antimagic total face chromatic number of plane graphs
    Anggraini, D. D.
    Dafik
    Maryati, T. K.
    Augustin, I. H.
    Kurniawati, E. Y.
    Prihandini, R. M.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [22] COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
    Lau, Gee-Choon
    Shiu, Wai Chee
    Nalliah, M.
    Zhang, Ruixue
    Premalatha, K.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (03): : 375 - 396
  • [23] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 133 - 152
  • [24] Chromatic number of super vertex local antimagic total labelings of graphs
    Hadiputra, Fawwaz F.
    Sugeng, Kiki A.
    Silaban, Denny R.
    Maryati, Tita K.
    Froncek, Dalibor
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 485 - 498
  • [25] Local distance antimagic chromatic number for the union of complete bipartite graphs
    Priyadharshini, V.
    Nalliah, M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (04): : 281 - 291
  • [26] On number of pendants in local antimagic chromatic number
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2673 - 2682
  • [27] On local antimagic chromatic number of cycle-related join graphs II
    Lau, Gee-Choon
    Premalatha, K.
    Arumugam, S.
    Shiu, Wai Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [28] Complete solutions on local antimagic chromatic number of three families of disconnected graphs
    Chan, Tsz Lung
    Lau, Gee-Choon
    Shiu, Wai Chee
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [29] Local Distance Antimagic Chromatic Number for the Union of Star and Double Star Graphs
    V. Priyadharshini
    M. Nalliah
    Ukrainian Mathematical Journal, 2023, 75 : 765 - 781
  • [30] Local Distance Antimagic Chromatic Number for the Union of Star and Double Star Graphs
    Priyadharshini, V.
    Nalliah, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (05) : 765 - 781