Discrete maximal parabolic regularity for Galerkin finite element methods

被引:0
|
作者
Dmitriy Leykekhman
Boris Vexler
机构
[1] University of Connecticut,Department of Mathematics
[2] Technische Universität München,Lehrstuhl für Optimalsteuerung, Fakultät für Mathematik
来源
Numerische Mathematik | 2017年 / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates have many applications. They are essential, for example, in establishing optimal a priori error estimates in non-Hilbertian norms without unnatural coupling of spatial mesh sizes with time steps.
引用
收藏
页码:923 / 952
页数:29
相关论文
共 50 条
  • [31] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402
  • [32] Flexible Galerkin finite element methods
    Adjerid, S
    Massey, TC
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1848 - 1850
  • [33] Maximum norm analysis of completely discrete finite element methods for parabolic problems
    Palencia, C
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) : 1654 - 1668
  • [34] ON L2 ERROR ESTIMATE FOR WEAK GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS
    Gao, Fuzheng
    Mu, Lin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2014, 32 (02) : 195 - 204
  • [35] WEAK GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS WITH L2 INITIAL DATA
    Kumar, Naresh
    Deka, Bhupen
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (02) : 199 - 228
  • [36] Convergence of H1-Galerkin mixed finite element method for parabolic problems with reduced regularity on initial data
    Tripathy M.
    Kumar Sinha R.
    Tripathy, M. (madhusmita.tripathy@gmail.com), 1600, Maik Nauka Publishing / Springer SBM (07): : 227 - 240
  • [37] Low Regularity Error Analysis for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Ye, Xiu
    Zhang, Shangyou
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (03): : 613 - 623
  • [38] Galerkin finite element methods for wave problems
    Sengupta, TK
    Talla, SB
    Pradhan, SC
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2005, 30 (5): : 611 - 623
  • [39] Galerkin finite element methods for wave problems
    T. K. Sengupta
    S. B. Talla
    S. C. Pradhan
    Sadhana, 2005, 30 : 611 - 623
  • [40] Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model
    Xiao, Jihong
    Zhu, Zimo
    Xie, Xiaoping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (01): : 79 - 110