Discrete maximal parabolic regularity for Galerkin finite element methods

被引:0
|
作者
Dmitriy Leykekhman
Boris Vexler
机构
[1] University of Connecticut,Department of Mathematics
[2] Technische Universität München,Lehrstuhl für Optimalsteuerung, Fakultät für Mathematik
来源
Numerische Mathematik | 2017年 / 135卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates have many applications. They are essential, for example, in establishing optimal a priori error estimates in non-Hilbertian norms without unnatural coupling of spatial mesh sizes with time steps.
引用
收藏
页码:923 / 952
页数:29
相关论文
共 50 条
  • [41] Superconvergence of fully discrete rectangular mixed finite element methods of parabolic control problems
    Hou, Tianliang
    Chen, Yanping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 286 : 79 - 92
  • [42] Runge–Kutta Time Discretization of Nonlinear Parabolic Equations Studied via Discrete Maximal Parabolic Regularity
    Peer C. Kunstmann
    Buyang Li
    Christian Lubich
    Foundations of Computational Mathematics, 2018, 18 : 1109 - 1130
  • [43] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [44] Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations
    Boya Zhou
    Xiaoli Chen
    Dongfang Li
    Journal of Scientific Computing, 2020, 85
  • [45] WEAK GALERKIN FINITE ELEMENT METHODS COMBINED WITH CRANK-NICOLSON SCHEME FOR PARABOLIC INTERFACE PROBLEMS
    Deka, Bhupen
    Roy, Papri
    Kumar, Naresh
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1433 - 1442
  • [46] ERROR ANALYSIS OF LINEARIZED SEMI-IMPLICIT GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC EQUATIONS
    Li, Buyang
    Sun, Weiwei
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (03) : 622 - 633
  • [47] Nonuniform Alikhanov Linearized Galerkin Finite Element Methods for Nonlinear Time-Fractional Parabolic Equations
    Zhou, Boya
    Chen, Xiaoli
    Li, Dongfang
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (02)
  • [48] Error estimates of H1-Galerkin mixed finite element methods for nonlinear Parabolic problem
    Che Haitao
    MANUFACTURING SYSTEMS AND INDUSTRY APPLICATIONS, 2011, 267 : 504 - 509
  • [49] Discrete Maximum Principle for Finite Element Parabolic Operators
    Mincsovics, Miklos E.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 604 - 612
  • [50] Maximal regularity of parabolic transmission problems
    Amann, Herbert
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (03) : 3375 - 3420