共 50 条
Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model
被引:3
|作者:
Xiao, Jihong
[1
,2
]
Zhu, Zimo
[1
]
Xie, Xiaoping
[1
]
机构:
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Quasistatic Maxwell viscoelastic model;
weak Galerkin method;
semi-discrete scheme;
fully discrete scheme;
error estimate;
WAVE-PROPAGATION SIMULATION;
LINEAR ELASTICITY;
DIFFUSION-PROBLEMS;
D O I:
10.4208/nmtma.OA-2022-0024
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree k (k >= 1) for the stress approximation, degree k + 1 for the velocity approximation, and degree k for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:79 / 110
页数:32
相关论文