Semi-Discrete and Fully Discrete Weak Galerkin Finite Element Methods for a Quasistatic Maxwell Viscoelastic Model

被引:3
|
作者
Xiao, Jihong [1 ,2 ]
Zhu, Zimo [1 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] Sichuan Univ, Math Dept, Jinjiang Coll, Pengshan 620860, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasistatic Maxwell viscoelastic model; weak Galerkin method; semi-discrete scheme; fully discrete scheme; error estimate; WAVE-PROPAGATION SIMULATION; LINEAR ELASTICITY; DIFFUSION-PROBLEMS;
D O I
10.4208/nmtma.OA-2022-0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers weak Galerkin finite element approximations on polygonal/polyhedral meshes for a quasistatic Maxwell viscoelastic model. The spatial discretization uses piecewise polynomials of degree k (k >= 1) for the stress approximation, degree k + 1 for the velocity approximation, and degree k for the numerical trace of velocity on the inter-element boundaries. The temporal discretization in the fully discrete method adopts a backward Euler difference scheme. We show the existence and uniqueness of the semi-discrete and fully discrete solutions, and derive optimal a priori error estimates. Numerical examples are provided to support the theoretical analysis.
引用
收藏
页码:79 / 110
页数:32
相关论文
共 50 条