Further Results on the Rainbow Vertex-Disconnection of Graphs

被引:0
|
作者
Xueliang Li
Yindi Weng
机构
[1] Nankai University,Center for Combinatorics and LPMC
关键词
Rainbow vertex-cut; Rainbow vertex-disconnection number; Threshold function; Nordhaus–Gaddum-type result; 05C15; 05C40; 05C35; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document}; whereas when x and y are adjacent, S+x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+x$$\end{document} or S+y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+y$$\end{document} is rainbow and x and y belong to different components of (G-xy)-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G-xy)-S$$\end{document}. Such a vertex subset S is called an x–yrainbow vertex-cut of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph G with rvd(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=k$$\end{document} for k≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \frac{n}{2}$$\end{document}. We then characterize the graphs of order n with rainbow vertex-disconnection number n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} and obtain the maximum size of a graph G with rvd(G)=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=n-1$$\end{document}. Moreover, we get a sharp threshold function for the property rvd(G(n,p))=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G(n,p))=n$$\end{document} and prove that almost all graphs G have rvd(G)=rvd(G¯)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=rvd({\overline{G}})=n$$\end{document}. Finally, we obtain some Nordhaus–Gaddum-type results: n-5≤rvd(G)+rvd(G¯)≤2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-5\le rvd(G)+rvd({\overline{G}})\le 2n$$\end{document} and n-1≤rvd(G)·rvd(G¯)≤n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1\le rvd(G)\cdot rvd({\overline{G}})\le n^2$$\end{document} for the rainbow vertex-disconnection numbers of nontrivial connected graphs G and G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} with order n≥24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 24$$\end{document}.
引用
收藏
页码:3445 / 3460
页数:15
相关论文
共 50 条
  • [41] Further hardness results on rainbow and strong rainbow connectivity
    Lauri, Juho
    DISCRETE APPLIED MATHEMATICS, 2016, 201 : 191 - 200
  • [42] Some further vertex Turan numbers for cube graphs
    Harborth, Heiko
    Nienborg, Hauke
    UTILITAS MATHEMATICA, 2008, 75 : 83 - 87
  • [43] Proper (Strong) Rainbow Connection and Proper (Strong) Rainbow Vertex Connection of Some Special Graphs
    Ma, Yingbin
    Xue, Yanfeng
    Zhang, Xiaoxue
    JOURNAL OF INTERCONNECTION NETWORKS, 2023, 23 (03)
  • [44] Further results on controllable graphs
    Stanic, Zoran
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 215 - 221
  • [45] Further results on the deficiency of graphs
    Petrosyan, P. A.
    Khachatrian, H. H.
    DISCRETE APPLIED MATHEMATICS, 2017, 226 : 117 - 126
  • [46] Vertex-disjoint rainbow cycles in edge-colored graphs
    Li, Luyi
    Li, Xueliang
    DISCRETE MATHEMATICS, 2022, 345 (07)
  • [47] Rainbow vertex-pancyclicity of strongly edge-colored graphs
    Wang, Maoqun
    Qian, Jianguo
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [48] Vertex-disjoint rainbow triangles in edge-colored graphs
    Hu, Jie
    Li, Hao
    Yang, Donglei
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [49] SEVERAL RESULTS OF VERTEX EVEN MEAN AND VERTEX ODD MEAN GRAPHS
    Prajapati, U. M.
    Raval, K. K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (04): : 259 - +
  • [50] Note on the complexity of deciding the rainbow (vertex-) connectedness for bipartite graphs
    Li, Shasha
    Li, Xueliang
    Shi, Yongtang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 155 - 161