Further Results on the Rainbow Vertex-Disconnection of Graphs

被引:0
|
作者
Xueliang Li
Yindi Weng
机构
[1] Nankai University,Center for Combinatorics and LPMC
关键词
Rainbow vertex-cut; Rainbow vertex-disconnection number; Threshold function; Nordhaus–Gaddum-type result; 05C15; 05C40; 05C35; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document}; whereas when x and y are adjacent, S+x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+x$$\end{document} or S+y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+y$$\end{document} is rainbow and x and y belong to different components of (G-xy)-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G-xy)-S$$\end{document}. Such a vertex subset S is called an x–yrainbow vertex-cut of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph G with rvd(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=k$$\end{document} for k≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \frac{n}{2}$$\end{document}. We then characterize the graphs of order n with rainbow vertex-disconnection number n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} and obtain the maximum size of a graph G with rvd(G)=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=n-1$$\end{document}. Moreover, we get a sharp threshold function for the property rvd(G(n,p))=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G(n,p))=n$$\end{document} and prove that almost all graphs G have rvd(G)=rvd(G¯)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=rvd({\overline{G}})=n$$\end{document}. Finally, we obtain some Nordhaus–Gaddum-type results: n-5≤rvd(G)+rvd(G¯)≤2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-5\le rvd(G)+rvd({\overline{G}})\le 2n$$\end{document} and n-1≤rvd(G)·rvd(G¯)≤n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1\le rvd(G)\cdot rvd({\overline{G}})\le n^2$$\end{document} for the rainbow vertex-disconnection numbers of nontrivial connected graphs G and G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} with order n≥24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 24$$\end{document}.
引用
收藏
页码:3445 / 3460
页数:15
相关论文
共 50 条
  • [31] Further results on outer independent 2-rainbow dominating functions of graphs
    Samadi, Babak
    Soltankhah, Nasrin
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (04) : 1983 - 1993
  • [32] Rainbow and Monochromatic Vertex-connection of Random Graphs
    Li, Wen-jing
    Jiang, Hui
    He, Jia-bei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 966 - 972
  • [33] Strong Rainbow Vertex-Connection of Cubic Graphs
    Arputhamary, I. Annammal
    Mercy, M. Helda
    PROCEEDINGS OF 2015 IEEE 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND CONTROL (ISCO), 2015,
  • [34] Rainbow and Monochromatic Vertex-connection of Random Graphs
    Wen-jing LI
    Hui JIANG
    Jia-bei HE
    ActaMathematicaeApplicataeSinica, 2022, 38 (04) : 966 - 972
  • [35] Rainbow vertex connection number of dense and sparse graphs
    Liu, Mengmeng
    ARS COMBINATORIA, 2016, 125 : 393 - 399
  • [36] The Rainbow Vertex Connection Number of Star Wheel Graphs
    Bustan, Ariestha Widyastuty
    Salman, A. N. M.
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019, 2019, 2202
  • [37] On the Complexity of Rainbow Vertex Colouring Diametral Path Graphs
    Dyrseth, Jakob
    Lima, Paloma T.
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 248
  • [38] The complexity of determining the vertex-rainbow index of graphs
    Mao, Yaping
    Shi, Yongtang
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [39] Rainbow and Monochromatic Vertex-connection of Random Graphs
    Wen-jing Li
    Hui Jiang
    Jia-bei He
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 966 - 972
  • [40] The rainbow vertex connection number of edge corona product graphs
    Fauziah, D. A.
    Dafik
    Agustin, I. H.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243