Further Results on the Rainbow Vertex-Disconnection of Graphs

被引:0
|
作者
Xueliang Li
Yindi Weng
机构
[1] Nankai University,Center for Combinatorics and LPMC
关键词
Rainbow vertex-cut; Rainbow vertex-disconnection number; Threshold function; Nordhaus–Gaddum-type result; 05C15; 05C40; 05C35; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document}; whereas when x and y are adjacent, S+x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+x$$\end{document} or S+y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+y$$\end{document} is rainbow and x and y belong to different components of (G-xy)-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G-xy)-S$$\end{document}. Such a vertex subset S is called an x–yrainbow vertex-cut of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph G with rvd(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=k$$\end{document} for k≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \frac{n}{2}$$\end{document}. We then characterize the graphs of order n with rainbow vertex-disconnection number n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} and obtain the maximum size of a graph G with rvd(G)=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=n-1$$\end{document}. Moreover, we get a sharp threshold function for the property rvd(G(n,p))=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G(n,p))=n$$\end{document} and prove that almost all graphs G have rvd(G)=rvd(G¯)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=rvd({\overline{G}})=n$$\end{document}. Finally, we obtain some Nordhaus–Gaddum-type results: n-5≤rvd(G)+rvd(G¯)≤2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-5\le rvd(G)+rvd({\overline{G}})\le 2n$$\end{document} and n-1≤rvd(G)·rvd(G¯)≤n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1\le rvd(G)\cdot rvd({\overline{G}})\le n^2$$\end{document} for the rainbow vertex-disconnection numbers of nontrivial connected graphs G and G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} with order n≥24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 24$$\end{document}.
引用
收藏
页码:3445 / 3460
页数:15
相关论文
共 50 条
  • [21] Graphs with vertex rainbow connection number two
    LU ZaiPing
    MA YingBin
    ScienceChina(Mathematics), 2015, 58 (08) : 1803 - 1810
  • [22] The strong rainbow vertex-connection of graphs
    Li, Xueliang
    Mao, Yaping
    Shi, Yongtang
    UTILITAS MATHEMATICA, 2014, 93 : 213 - 223
  • [23] THE RAINBOW VERTEX CONNECTIVITIES OF SMALL CUBIC GRAPHS
    Lu, Zai Ping
    Ma, Ying Bin
    ARS COMBINATORIA, 2017, 135 : 335 - 343
  • [24] Graphs with vertex rainbow connection number two
    ZaiPing Lu
    YingBin Ma
    Science China Mathematics, 2015, 58 : 1803 - 1810
  • [25] Graphs with vertex rainbow connection number two
    Lu ZaiPing
    Ma YingBin
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1803 - 1810
  • [26] Rainbow vertex k-connection in graphs
    Liu, Henry
    Mestre, Angela
    Sousa, Teresa
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2549 - 2555
  • [27] A survey on rainbow (vertex-)index of graphs
    Zhao, Yan
    Zhang, Zan-Bo
    Zhang, Xiaoyan
    DISCRETE APPLIED MATHEMATICS, 2024, 349 : 96 - 105
  • [28] The Rainbow (Vertex) Connection Number of Pencil Graphs
    Simamora, Dian N. S.
    Salman, A. N. M.
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 138 - 142
  • [29] Rainbow domination regular graphs that are not vertex transitive
    Zerovnik, Janez
    DISCRETE APPLIED MATHEMATICS, 2024, 349 : 144 - 147
  • [30] Further Results on the 3-Consecutive Vertex Coloring Number of Certain Graphs
    John, Dona
    Dominic, Charles
    Vallikavungal, Jobish
    IEEE ACCESS, 2024, 12 : 144164 - 144173