Further Results on the Rainbow Vertex-Disconnection of Graphs

被引:0
|
作者
Xueliang Li
Yindi Weng
机构
[1] Nankai University,Center for Combinatorics and LPMC
关键词
Rainbow vertex-cut; Rainbow vertex-disconnection number; Threshold function; Nordhaus–Gaddum-type result; 05C15; 05C40; 05C35; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document}; whereas when x and y are adjacent, S+x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+x$$\end{document} or S+y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S+y$$\end{document} is rainbow and x and y belong to different components of (G-xy)-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G-xy)-S$$\end{document}. Such a vertex subset S is called an x–yrainbow vertex-cut of G. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph G with rvd(G)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=k$$\end{document} for k≥n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \frac{n}{2}$$\end{document}. We then characterize the graphs of order n with rainbow vertex-disconnection number n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} and obtain the maximum size of a graph G with rvd(G)=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=n-1$$\end{document}. Moreover, we get a sharp threshold function for the property rvd(G(n,p))=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G(n,p))=n$$\end{document} and prove that almost all graphs G have rvd(G)=rvd(G¯)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rvd(G)=rvd({\overline{G}})=n$$\end{document}. Finally, we obtain some Nordhaus–Gaddum-type results: n-5≤rvd(G)+rvd(G¯)≤2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-5\le rvd(G)+rvd({\overline{G}})\le 2n$$\end{document} and n-1≤rvd(G)·rvd(G¯)≤n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1\le rvd(G)\cdot rvd({\overline{G}})\le n^2$$\end{document} for the rainbow vertex-disconnection numbers of nontrivial connected graphs G and G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{G}}$$\end{document} with order n≥24\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 24$$\end{document}.
引用
收藏
页码:3445 / 3460
页数:15
相关论文
共 50 条
  • [1] Further Results on the Rainbow Vertex-Disconnection of Graphs
    Li, Xueliang
    Weng, Yindi
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) : 3445 - 3460
  • [2] The Rainbow Vertex-disconnection in Graphs
    Xu Qing Bai
    You Chen
    Ping Li
    Xue Liang Li
    Yin Di Weng
    Acta Mathematica Sinica, English Series, 2021, 37 : 249 - 261
  • [3] The Rainbow Vertex-disconnection in Graphs
    Xu Qing BAI
    You CHEN
    Ping LI
    Xue Liang LI
    Yin Di WENG
    Acta Mathematica Sinica,English Series, 2021, (02) : 249 - 261
  • [4] The Rainbow Vertex-disconnection in Graphs
    Bai, Xu Qing
    Chen, You
    Li, Ping
    Li, Xue Liang
    Weng, Yin Di
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (02) : 249 - 261
  • [5] Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs
    Weng, Yindi
    GRAPHS AND COMBINATORICS, 2024, 40 (02)
  • [6] Some Results on the Rainbow Vertex-Disconnection Colorings of Graphs
    Yindi Weng
    Graphs and Combinatorics, 2024, 40
  • [7] The proper vertex-disconnection of graphs
    Chen, You
    Li, Xueliang
    THEORETICAL COMPUTER SCIENCE, 2022, 923 : 167 - 178
  • [8] Bounds and complexity results of rainbow vertex-disconnection colorings
    Weng, Yindi
    AIMS MATHEMATICS, 2025, 10 (03): : 5960 - 5970
  • [9] Algorithm for monochromatic vertex-disconnection of graphs
    Center for Applied Mathematics, Tianjin University, Tianjin
    300354, China
    不详
    300072, China
    arXiv,
  • [10] Monochromatic Vertex-Disconnection Colorings of Graphs
    Gao, Yanhong
    Li, Xueliang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) : 1621 - 1640