Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
|
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
  • [41] Experimental and numerical study of the impact interaction of a rigid impactor with a combined target
    V. V. Balandin
    A. M. Bragov
    S. V. Zefirov
    A. K. Lomunov
    Combustion, Explosion, and Shock Waves, 2017, 53 : 116 - 121
  • [42] Interaction of atmospheric pressure plasma jet with a dielectric surface: relative permittivity and roughness
    Li, Ronghui
    Guan, Yi
    ELECTRICAL ENGINEERING, 2024, 106 (04) : 4201 - 4217
  • [43] Jet formation at the interaction of localized waves on the free surface of dielectric liquid in a tangential electric field
    Kochurin, E. A.
    Zubarev, N. M.
    XXXII INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2017), 2018, 946
  • [44] NUMERICAL STUDY ON THE EFFECTIVE DIELECTRIC PERMITTIVITY OF MULTIPHASE MIXTURE
    Guo, C.
    Ma, N.
    Ling, B.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7073 - 7076
  • [45] A CRYOGENIC TARGET WITHIN AN ELECTRIC-FIELD
    BORZUNOV, YT
    CHUMAKOV, VF
    GOLOVANOV, LB
    MAZARSKY, VL
    TZVINEV, AP
    ZELDOVICH, AG
    CRYOGENICS, 1983, 23 (03) : 151 - 152
  • [46] Laser ablation of a Zn target in electric field
    Park, Hye Sun
    Nam, Sang Hwan
    Park, Seung Min
    COLA'05: 8TH INTERNATIONAL CONFERENCE ON LASER ABLATION, 2007, 59 : 384 - +
  • [47] DC electric field dependence for the dielectric permittivity in antiferroelectric and ferroelectric states
    Wang, Jinfei
    Yang, Tongqing
    Chen, Shengchen
    Yao, Xi
    Pelaiz-Barranco, A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 587 : 827 - 829
  • [48] STUDYING PERMITTIVITY AND ELECTRIC FIELD FOR PLASMA GENERATION BY DIELECTRIC RESONATOR ARRAYS
    Dennison, Stephen
    Hopwood, Jeffrey
    Chapman, Adam
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [49] Description of electric field-dependent dielectric permittivity in PMN ceramics
    Lima, E. C.
    Guerra, J. D. S.
    Araujo, E. B.
    FERROELECTRICS, 2019, 545 (01) : 127 - 133
  • [50] A numerical study of target flow field detection by autonomous underwater vehicles
    Li, Yixin
    Zhang, Le
    Zhang, Minge
    SHIPS AND OFFSHORE STRUCTURES, 2021, 16 (S2) : 12 - 19