Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
|
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
  • [11] INFLUENCE OF ELECTRIC SATURATION ON THE DIELECTRIC PERMITTIVITY OF ELECTROLYTES
    KLUGMAN, IY
    SOVIET ELECTROCHEMISTRY, 1981, 17 (05): : 602 - 605
  • [12] ELECTRIC-FIELD EFFECT ON THE REFLECTION OF ELECTRONS FROM DIELECTRIC TARGET
    KONONOV, BA
    SAPOZHKOV, YI
    SMEKALIN, LF
    YAGUSHKIN, NI
    RADIOTEKHNIKA I ELEKTRONIKA, 1987, 32 (04): : 892 - 895
  • [13] Interaction force between magnetic field and ferromagnetic target: analytical, numerical and experimental study
    Neri, Paolo
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2019, 95 (03): : 209 - 218
  • [14] Influence of a target on the electric field profile in a kHz atmospheric pressure plasma jet with the full calculation of the Stark shifts
    Hofmans, Marlous
    Sobota, Ana
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (04)
  • [15] Numerical study on jet and stretch behaviors of an impingement leaky-dielectric droplet under electric field
    Zhou, Xin
    Wang, Hong
    Zhang, Qian
    Tian, Ye
    Deng, Qiyuan
    Zhu, Xun
    Ding, Yudong
    Chen, Rong
    Liao, Qiang
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2023, 167
  • [16] Numerical Simulation of Jet Penetration into a Ceramic Target
    Ren, Hui-Lan
    Guo, Ting-Ting
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 : 235 - 239
  • [17] A numerical study on breakup of a liquid jet in an axial electric field
    Hathi, Dev S.
    Panchal, Pratik M.
    Sharma, Atul
    Thaokar, Rochish
    Lakdawala, Absar M.
    JOURNAL OF AEROSOL SCIENCE, 2023, 170
  • [18] Measurement of the charge distribution deposited on a target surface by an annular plasma synthetic jet actuator: Influence of humidity and electric field
    Ricchiuto, A. C.
    Borghi, C. A.
    Cristofolini, A.
    Neretti, G.
    JOURNAL OF ELECTROSTATICS, 2020, 107
  • [19] Interaction of a circular turbulent jet with a flat target
    Volkov, K. N.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (01) : 44 - 54
  • [20] Interaction of a circular turbulent jet with a flat target
    K. N. Volkov
    Journal of Applied Mechanics and Technical Physics, 2007, 48 : 44 - 54